首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reuber hepatoma H-35 cells actively synthesize the urea cycle enzyme, carbamoyl-phosphate synthetase I. Treatment of H-35 cells with dexamethasone (0.14 microM), however, enhanced synthesis of the enzyme (as measured by incorporation of [35S]methionine) by 4-5-fold. Insulin (0.18 microM) completely inhibited dexamethasone-dependent stimulation of enzyme synthesis. In vitro translation and cDNA hybridization assays were employed to measure effects of dexamethasone plus or minus insulin on levels of mRNA encoding the biosynthetic precursor of carbamoyl-phosphate synthetase I (pCPS) in Reuber H-35 cells. Both measurements yielded similar results: dexamethasone increased pCPS mRNA levels by 4-5-fold and insulin suppressed this response, but only by 50%. Specific cDNA hybridization assays also demonstrated that Reuber H-35 cells, even after hormone treatments, contain only very low levels of albumin mRNA, and no detectable ornithine carbamoyl-transferase mRNA.  相似文献   

2.
Regulation of synthesis of carbamoyl-phosphate synthetase I by glucocorticoids, 8-bromoadenosine 3',5'-monophosphate (8-bromo-cAMP), and insulin was investigated in Reuber hepatoma H-35. By measuring the incorporation of [35S]methionine into carbamoyl-phosphate synthetase I and its precursor, we showed that dexamethasone stimulates the enzyme synthesis approximately fivefold. A detectable stimulation was observed at 1 nM of dexamethasone, half-maximal stimulation at 4 nM, and maximal stimulation above 40 nM. Corticosterone was more effective than dexamethasone both for the minimal concentration needed and for the extent of the stimulation. Hydrocortisone was less effective than dexamethasone. 8-Bromo-cAMP also stimulated the enzyme synthesis at a concentration of 3 mM. The effect of 8-bromo-cAMP was suggested to be additive to the effect of dexamethasone. Physiological concentrations of insulin strongly suppressed the stimulatory effect of dexamethasone on the enzyme synthesis but could not completely counteract the effect of dexamethasone. The half-maximal and maximal effects of insulin were observed at 0.5 nM and 5 nM, respectively. Insulin also counteracted the effect of 8-bromo-cAMP on the enzyme synthesis.  相似文献   

3.
Regulation of carbamoyl-phosphate synthetase I (CPS) synthesis by various hormones was compared in primary cultured hepatocytes from adult rat and in Reuber hepatoma H-35 by pulse labeling of the cells with [35S]methionine. CPS synthesis in hepatocytes was stimulated 8-fold and 5-fold by dexamethasone and glucagon respectively. CPS synthesis in hepatocytes was synergically (about 50-fold) stimulated by a combination of dexamethasone and glucagon. Less synergic stimulation was observed by combining dexamethasone with N6, O2'-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) or with isoproterenol. The basal level of CPS synthesis in hepatoma cells was higher than that in hepatocytes. CPS synthesis in hepatoma cells was stimulated by dexamethasone and dibutyryl-cAMP but the extent was only 3-fold and 1.8-fold respectively. The synergic effect of combination of dexamethasone and dibutyryl-cAMP was not observed in hepatoma cells. Neither glucagon nor isoproterenol exhibited an appreciable effect on CPS synthesis in hepatoma cells. Insulin and epinephrine suppressed CPS synthesis both in hepatocytes and hepatoma cells. The effect of epinephrine was indicated to be through alpha-adrenergic receptors. The effects of insulin and epinephrine were additive on CPS synthesis both in hepatocytes and hepatoma cells.  相似文献   

4.
5.
The identity of long-chain acyl-CoA synthetase in microsomes, mitochondria, and peroxisomes of rat liver was examined by using the antibody raised against a purified preparation of the microsomal enzyme. The enzyme activities of these three organelles and the purified microsomal enzyme were titrated by the antibody in a very similar fashion when the activity was measured in terms of palmitoyl-CoA synthetase activity. It was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipitates and by Western blot analysis that the enzymes of all three organelles consisted of a polypeptide with the same molecular weight as that of the purified enzyme, and that the specific enzyme activity of the antigenic protein in all three subcellular compartments was nearly the same. The presence of other palmitoyl-CoA synthetase activity in these organelles could not be confirmed. Immunocytochemical study to locate the antigenic site with protein A-gold complex showed that the gold particles were closely associated with the membranes of these organelles. The cell-free translation product in a rabbit reticulocyte lysate protein-synthesizing system and the subunit of the mature enzyme labeled with [35S]methionine in the liver slices exhibited the same mobility as the subunit of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme in microsomes, mitochondria, and peroxisomes was labeled at nearly the same rate when the liver slices were incubated with [35S]methionine.  相似文献   

6.
RNA dot-blot, quantitative electron microscope immunocytochemistry, and electrophoretic immunoblotting techniques were employed to investigate the expression of carbamoyl-phosphate synthetase I (CPS) and ornithine carbamoyl transferase (OCT) genes in rat liver and intestinal mucosa. Comparing only those cell types in the two tissues which express these enzymes, we show that the concentration of CPS and OCT in hepatocyte mitochondria is 2.3-times and 1.2-times greater, respectively, than in intestinal epithelial cell mitochondria. As a percentage of total tissue protein, however, liver homogenates contain 10-20 times more CPS and 5-10 times more OCT than is found in intestinal mucosa. These relatively large differences in enzyme protein levels between the two tissues are not reflected by differences in their mRNA levels. As a percentage of total translational activity in vitro (based on incorporation of [35S]methionine), total liver mRNA directed synthesis of about twice as much precursor CPS (pCPS) and precursor OCT (pOCT) than did equivalent amounts of mRNA from intestinal mucosa. The ratio of pCPS and pOCT mRNA levels between the two tissues (2:1, liver:intestinal mucosa) was confirmed by dot-blot and Northern hybridizations employing specific cDNA probes. The sizes of the respective mRNAs were the same for the two tissues: about 6000 residues for pCPS mRNA and about 1700 residues for pOCT mRNA.  相似文献   

7.
Exposure of fibroblasts derived from keloid tissues, desmoid and dermal tissue from individuals with Gardner's syndrome (GS) to dexamethasone resulted in the suppression of protein kinase C (PKC) activity and [3H]thymidine incorporation into DNA, and a 20-fold induction of glutamine synthetase activity. Treatment of GS and keloid fibroblasts with 0.1 microM dexamethasone for 36 h increased glucocorticoid receptor (GR) synthesis, as determined by [35S]methionine labeling and immunoprecipitation with a monoclonal antibody to the human GR. The suppression of PKC activity by dexamethasone was shown to result from a loss of protein mass as determined by immunoblotting using an antibody to PKC type III. In contrast to these results, exposure of fibroblasts isolated from normal tissues to dexamethasone did not result in the suppression PKC and [3H]thymidine incorporation, there was only a sixfold induction of glutamine synthetase, and a decrease of GR synthesis. As no primary receptor binding defect could be detected, the altered response of tumor cells to steroid-occupied receptor indicates a partial post-receptor binding defect in GS and keloid cells.  相似文献   

8.
Mouse 3T6 cells that overproduce glutamine synthetase   总被引:4,自引:0,他引:4  
A mouse 3T6 subline that grows in glutamine-free medium has been cloned and exposed to a regimen of increasing concentrations of the glutamine synthetase inhibitor, methionine sulfoxime. Cells selected for resistance to 700 microM methionine sulfoxime show a 75-fold increase in glutamine synthetase activity relative to the original subclone. Immune precipitation of extracts prepared from cells pulse-labeled with L-[35S] methionine indicates that the increase in enzyme activity reflects an increase in biosynthesis of glutamine synthetase. Results obtained from in vitro translation followed by immune precipitation suggests that the methionine sulfoxime-resistant cells are highly enriched in mRNA encoding glutamine synthetase. The increase in enzyme activity is lost upon culture of the cells in nonselective medium--a finding consistent with the observation of double minute chromosomes in only the drug-resistant cells. These data strongly support the notion that methionine sulfoxime treatment has resulted in selection of cells that have amplified the gene encoding glutamine synthetase.  相似文献   

9.
3-Hydroxy-3-methylglutaryl(HMG)-coenzyme A reductase purified from rat liver in the absence of protease inhibitors is composed of two distinct polypeptides of Mr = 51,000 and 52,500. Antibody raised to enzyme purified from rats fed a diet supplemented with cholestyramine and mevinolin inactivated HMG-CoA reductase. The antibody specifically precipitated a polypeptide of Mr = 94,000 from rat liver cells that had been previously incubated with [35S]methionine. The immunoprecipitation of the 35S-labeled polypeptide of Mr = 94,000 was prevented by addition of unlabeled pure HMG-CoA reductase (Mr = 51,000 and 52,500). Incubation of rat liver cells with mevalonolactone resulted in a decreased activity of HMG-CoA reductase and in a 40% decrease in the rate of incorporation of [35S]methionine into the immunoprecipitable reductase polypeptide of Mr = 94,000. In pulse-chase experiments, mevalonolactone enhanced the rate of degradation of the Mr = 94,000 polypeptide 3-fold. We propose that endogenous microsomal HMG-CoA reductase has a subunit of Mr = 94,000 and that the synthesis and degradation of this polypeptide are regulated by either mevalonolactone or, more likely, a product of mevalonolactone metabolism.  相似文献   

10.
F E Weber  D Pette 《FEBS letters》1988,238(1):71-73
An 11-fold increase in hexokinase activity and the hexokinase II isoform was found in rat tibialis anterior muscle after 7 days of chronic, low-frequency stimulation. In vivo labeling studies showed that this increase in enzyme protein content was related to an approx. 30-fold increase in [35S] methionine incorporation.  相似文献   

11.
1) Rat liver 5SrRNA enhanced the activity of methionyl-tRNA synthetase in the macromolecular aminoacyl-tRNA synthetase complex (Fraction B) purified from a rat liver supernatant. 5SrRNA-L5 protein complexes (5SrRNP) had similar effects, whereas other ribosomal RNAs and E. coli 5SrRNA had no effect. 2) 5SrRNA increased the activity of the complex for methionine-dependent ATP-PPi exchange. 3) 5SrRNA increased the activities of methionyl-, arginyl-, and isoleucyl-tRNA synthetases in the complex, but scarcely affected its leucyl-, lysyl-, and glutamyl-tRNA synthetase activities. 4) 5SrRNA increased the activities of the rat liver supernatant for the attachment of [35S]methionine, [3H]isoleucine, [3H]lysine, [3H]proline, [3H]threonine, [3H]tyrosine, and [3H]phenylalanine to endogenous tRNA markedly, and those for [3H]leucine, [3H]arginine, [3H]aspartic acid, and [3H]histidine slightly, but did not affect those for [3H]glutamic acid, [3H]glycine, [3H]valine, [3H]alanine, and [3H]tryptophan. 5) Preincubation of the rat liver supernatant with an antibody against Artemia salina ribosomal protein L5, that cross-reacted with the rat liver ribosomal protein L5, decreased the attachment of [35S]methionine and [3H]isoleucine to endogenous tRNA, and 5SrRNA and 5SRNP enhanced these activities of the supernatant preincubated with antibody. On the other hand, the antibody did not affect that for [3H]alanine. Immune dot blot analysis using the antibody against L5 showed the presence of immunologically the same protein as L5 in the liver supernatant. Northern blot analysis of RNA in the immunoprecipitate prepared from the liver supernatant incubated with the antibody against L5 indicated that 5SrRNA was complexed with L5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Exposure to N2O inactivates cob[I]alamin and interferes with the activity of methionine synthetase, of which cob[I]alamin is a coenzyme. Less directly, it stops the formation of folate polyglutamate from tetrahydrofolates. Studies on the activity of folate polyglutamate synthetase in rat liver in vivo were carried out. The synthetase activity increased after exposure to N2O for up to 48 h, but longer exposure was accompanied by a return of activity to baseline values. The rise in synthetase activity was prevented by supplying methionine, 5'-methylthioadenosine or 5-formyltetrahydrofolate. The fall in folate polyglutamate synthetase activity after 48 h was accompanied by a restoration of hepatic synthesis of folate polyglutamate despite continuation of N2O exposure.  相似文献   

13.
The effect of inactivation of cobalamin by N2O on the intestinal absorption of folate was studied using rat everted gut sacs. Further, in view of uncertainties about the presence of methionine synthetase in gut [1], this enzyme was measured. Everted gut sacs were incubated with [2-14C]tetrahydrofolate, and the subsequent appearance of labelled formyl- and methyl [14C] tetrahydrofolate in everted segments of small intestine of rats was studied. Considerable methionine synthetase activity was present in washed everted gut sacs but not in gut segments in the absence of such treatment. Methionine synthetase activity declined after exposure to N2O, which oxidizes and inactivates cob(I)alamin. Folate uptake by gut sacs was not affected by 24 h exposure of the animals to N2O but fell significantly after 7 days exposure. There was a significant fall in the amount of formyltetrahydrofolate formed after cobalamin inactivation and this was reversed by supplying either methionine, methylthioadenosine or sodium formate. Serine had no effect. The data support the hypothesis that methionine and methylthioadenosine act by supplying single carbon units at the formate level of oxidation.  相似文献   

14.
In primary cultures of adult rat hepatocytes maintained in a salts/glucose medium, a more than 100-fold increase in ornithine decarboxylase (EC 4.1.1.17) activity was caused by asparagine and glucagon in a synergistic manner. The synthesis rate of ornithine decarboxylase was determined by [35S]methionine incorporation into the enzyme protein, and the amount of ornithine decarboxylase-mRNA was measured by hybridization with a cloned rat liver ornithine decarboxylase-cDNA. The synthesis rate of ornithine decarboxylase was stimulated more than 20-fold by asparagine and glucagon together, but the amount of ornithine decarboxylase-mRNA was increased only 3-4-fold, indicating that translational stimulation was involved in the induction process. Asparagine alone stimulated the synthesis of ornithine decarboxylase without substantial effect on the amount of ornithine decarboxylase-mRNA, whereas glucagon alone increased the amount of ornithine decarboxylase-mRNA about 3-fold without a detectable change in either enzyme activity or enzyme synthesis. Asparagine, at least in part, also suppressed degradation of ornithine decarboxylase.  相似文献   

15.
GABA[arrow beta]AlaAT convertase is an endopeptidase that processes brain-type 4-aminobutyrate aminotransferase (GABA AT; EC 2.6.1.19) to liver-type beta-alanine-oxoglutarate aminotransferase (beta-AlaAT I) in rats. Its molecular mass was 180 kDa as determined by gel filtration. A subunit molecular mass of 97652 Da was measured using MALDI-TOF MS. The N-terminal sequence of the purified GABA[arrow beta]AlaAT convertase was SRVEVSKVLILGSGGLSIGQAGEFDYSGSQAV- and was identical to residues 418-449 of carbamoyl-phosphate synthetase I (CPS I; EC 1.2.1.27) purified from rat liver. The subunit molecular mass and the N-terminal amino acid sequence suggested that GABA[arrow beta]AlaAT convertase was the 418-1305 peptide of CPS I. An expression vector containing the coding region of the 418-1305 peptide of rat CPS I was transfected into NIH3T3 cells and the extract of the cells showed GABA[arrow beta]AlaAT convertase activity.  相似文献   

16.
An indirect, competitive enzyme-linked immunosorbent assay for the quantitation of carbamoyl-phosphate synthetase I (ammonia) in rat liver has been developed. Homogenization of the liver in 1% sodium deoxycholate is used for complete solubilization of the enzyme. The detergent does not interfere with the method if diluted to a concentration of 0.01% or lower. The assay is applied to determine the amount of enzyme in control rats and in rats fed "cafeteria" or high-protein diets. Changes in the amount of carbamoyl-phosphate synthetase I (ammonia) paralleled changes in enzymatic activity.  相似文献   

17.
N-Acetyl-L-glutamate synthetase (EC 2.3.1.1) catalyses the synthesis of N-acetyl-L-glutamate, an allosteric activator of carbamoyl-phosphate synthetase I in the liver of ureotelic animals, and the first enzyme is activated specifically by arginine. We have proposed that arginine can stimulate acetylglutamine synthetase in vivo and thereby increase the mitochondrial content of acetylglutamate. The effects of arginine on acetylglutamate synthesis in isolated mitochondria were investigated in detail in the present work. When rat liver mitochondria were isolated and incubated with [14C]glutamate and unlabelled acetate as substrates, acetyl[14C]glutamate synthesis in the mitochondria was more extensive in the presence than in the absence of L-arginine. There was no significant difference between the specific radioactivities of intramitochondrial [14C]glutamate in the presence and absence of arginine. When rat liver mitochondria were incubated with [14C]acetate and unlabelled glutamate as substrates, arginine also stimulated acetyl[14C]glutamate synthesis in the isolated mitochondria. L-Lysine or L-homoarginine, which does not activate acetylglutamate synthetase, had no effect on acetylglutamate synthesis, in the isolated mitochondria. The arginine concentration giving half-maximal synthesis of acetylglutamate in isolated mitochondria was about 50 microM, which is in the range of physiological concentrations of arginine in the liver. As we previously reported [Kawamoto, Ishida, Mori & Tatibana (1982) Eur. J. Biochem. 123, 637-641], the sensitivity of acetylglutamate synthetase to arginine activation undergoes marked changes after food ingestion. The extent of arginine activation of acetylglutamate synthesis in isolated mitochondria correlated well with the sensitivity of acetylglutamate synthetase extracted from the mitochondria to arginine activation. These data lend further support to the idea that arginine itself activates the mitochondrial synthesis of acetylglutamate.  相似文献   

18.
The actions of polycyclic aromatic hydrocarbons and glucocorticoids to regulate the synthesis of cytochrome P-450c (the major isozyme induced by polycyclic aromatic hydrocarbons) were investigated in fetal rat hepatocytes maintained in primary monolayer culture. Treatment of hepatocytes in culture with 1,2-benzanthracene resulted in a 50-fold increase in 7-ethoxycoumarin O-deethylase activity. The level of P-450c increased in the cells in a time-dependent fashion as determined by immunoelectrophoretic analysis. The inductive effect of BA was potentiated approximately 1.6- to 2.3-fold when 1 microM dexamethasone was included in the culture medium. However, dexamethasone alone had little or no effect on the induction of P-450c. The rate of synthesis of P-450c was examined by immunoisolation of the specific isozyme from total cellular proteins radiolabeled with [35S]methionine and from the protein products formed during in vitro translation of the isolated mRNA. In addition, the amount of mRNA specific for cytochrome P-450c was determined by Northern blot analysis of RNA extracted from cultured cells. The changes in the rates of synthesis and mRNA levels were found to parallel the changes in enzyme activity. The concentration of dexamethasone required to cause a half-maximal increase in P-450c content in the presence of 1,2-benzanthracene was between 10(-8) and 10(-7) M. It is concluded that glucocorticoids act synergistically with polycyclic aromatic hydrocarbons to increase the levels of P-450c expressed in the fetal rat liver, and that this action is likely mediated by the classical type II glucocorticoid receptor.  相似文献   

19.
A simple and rapid procedure is described for purification of carbamyl phosphate synthetase from the matrix fraction of rat liver mitochondria. Antibodies to the enzyme were raised in sheep and purified from antiserum by affinity chromatography on enzyme-bound Sepharose columns. When membrane-free polyribosomes, isolated from a cytosolic fraction of rat liver, were incubated in a messenger-dependent rabbit reticulocyte protein-synthesizing system in the presence of [35S]methionine, the purified antibody precipitated a product of translation representing 0.2% of total trichloroacetic acid-insoluble radioactivity. It demonstrated mobility characteristics in sodium dodecyl sulfate-polyacrylamide gels expected for a polypeptide of molecular mass approximately 5500 daltons larger than the mature mitochondrial form of the enzyme (160,000 daltons). Proteolysis of both the mature and presumptive in vitro precursor forms of the enzyme yielded respective sets of peptide fragments which gave similar patterns upon gel electrophoresis. Excess mitochondrial enzyme effectively competed with the in vitro product for interaction with anti-carbamyl phosphate synthetase antibody.  相似文献   

20.
Different fixation media have been compared in order to find one that preserves the histological structure of rat liver and allows unambiguous immunohistochemical detection of carbamoyl-phosphate synthetase (ammonia). Fixation of rat liver in a mixture of methanol, acetone, and water yields the most intense immunohistochemical staining. Using a specific antiserum raised against rat liver carbamoyl-phosphate synthetase, less than 1% of the enzyme protein is extractable after this fixation procedure, and the histological structure is similar to that after fixation in Bouin's fixative. Specific immunohistochemical staining is localized exclusively in the cytoplasm of the parenchymal cells; its granular distribution is in accordance with the mitochondrial localization of carbamoyl-phosphate synthetase. Immunohistochemical staining shows a heterogeneous distribution within the liver acinus. Staining is most intense around the portal venules, decreases slowly toward the hepatic venules and is, after an abrupt decrease, virtually absent in a limited area surrounding these venules. The possible significance of the heterogeneous distribution of carbamoyl-phosphate synthetase for ammonia metabolism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号