首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to investigate possible involvement of abscisic acid (ABA) in foliar abscission processes, its movement and endogenous levels were examined in cotyledons taken from cotton seedlings (Gossypium hirsutum L.) subjected to varying degrees of water deficit, a condition which initiates leaf abscission. Using a pulse-labeling technique to avoid complications of uptake and exit from the tissue, ABA-1-14C movement was observed in both basipetal and acropetal directions in cotyledonary petioles taken from well watered, stressed, and rewatered plants. The label distribution patterns obtained after 1 and 3 hours of transport under all situations of water supply were diffusive in nature and did not change when tested under anaerobic conditions. The transport capacity of the petioles ranged from 3.6 to 14.4% ABA-1-14C transported per hour at estimated velocities of 0 to 2 millimeters per hour. Comparison of basipetal and acropetal movement indicated a lack of polarity under all conditions tested. These low transport capacities and slow velocities of movement, when compared to the active transport systems associated with auxin movement, as well as the lack of anaerobic effects and polarity, suggest that ABA movement in cotton cotyledonary petiole sections is facilitated by passive diffusion. Increases in free and bound ABA in the lamina with increased water stress did not correlate with patterns of cotyledonary abscission. Thus, no evidence was found to suggest that ABA is directly involved in stress-induced abscission processes.  相似文献   

2.
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.  相似文献   

3.
4.
Cotton (Gossypium hirsutum L.) fruiting forms exhibit pronounced changes, with age, in their probability of abscission. Large floral buds rarely abscise, but after anthesis the young fruits (bolls) have a high probability of abscising. Abscission rate reaches a peak about 5 to 6 days after anthesis and then gradually decreases. An experiment was conducted to try to determine the reason for the rapid and pronounced increase in probability of abscission just after anthesis. Cotton was grown in the field and fruiting forms of various ages from 9 days before to 9 days after anthesis were all harvested the same day and subsequently analyzed for ABA and IAA. The concentration of ABA decreased slightly at anthesis and increased gradually thereafter. In contrast, the concentration of IAA was high before anthesis and then decreased at anthesis to about one-fifth the previous concentration. IAA remained low for at least 4 days after anthesis and then increased rapidly between 7 and 9 days after anthesis. The high concentration of IAA in floral buds before anthesis is probably a major factor in their resistance to abscission. Likewise, the low concentration of IAA at anthesis and for about 4 days thereafter may promote fruit abscission during the young boll stage.  相似文献   

5.
Abscisic Acid, Auxin, and Ethylene in Explant Abscission   总被引:1,自引:0,他引:1  
Experiments with explants of Phaseolus vulgaris L., cv. CanadianWonder, show that abscission and the associated rise in oarboxymethyl-cellulaseactivity in the separation zone are initiated by a peak in ethyleneproduction during senescence of pulvinar tissue distal to thezone. Distal applications of abscisic acid (ABA) induce an earlierpeak in ethylene production, increase cellulase activity, andpromote abscission. ABA is more effective in these ways if treatmentis delayed from 0 to 24 h after excision. With increasing concentrations of ABA the maximum rate of ethylene production is achievedsooner. Indol-3yl-acetic acid (IAA) and ABA are antagonisticin this system and have opposing effects. IAA retards the timeof peak ethylene-production and delays abscission. Explantsmay be retained for long periods without abscinding if incubatedin an ethylene-free atmosphere: the addition of ethylene forany one 24-h period (except the first 24 h after excision) willinduce abscission. The initial period of insensitivity to ethyleneis extended by distal applications of IAA. Ethylene-inducedabscission can be inhibited by IAA applied up to 72 h afterexcision provided the ethylene is not applied first. It is proposedthat abscission in the explant is controlled at two levels:(1) an auxin-dependent stage determining the duration of insensitivityto ethylene; (2) the timing of a rise in ethylene productionin senescing tissue distal to the separation zone. An auxin-ethylenebalance-mechanism at the separation zone is discussed.  相似文献   

6.
The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.  相似文献   

7.
The role of abscisic acid in the control of flower abscission in Lupinus luteus L. was examined. Using a modified extraction and purification technique, endogenous abscisic acid levels in the upper flowers of an inflorescence were found to increase markedly some days before abscission could be detected. When abscisic acid was injected into flower-bearing nodes or fed via the roots, no increase in the abscission rate was obtained at any position in the flowerhead. Application of abscisic acid to only the leaves resulted in a marked increase in flower abscission. The role of abscisic acid per se as a primary controlling factor of flower abscission in yellow lupin is questioned.  相似文献   

8.
Etiolated seedlings of foxtail millet (Setaria italica Beauv.) dwarf mutant CH84113 were treated with various concentrations of abscisic acid (ABA), mefluidide, mannitol, or polyethylene glycol (PEG) 6000. It was found that these chemicals, at suitable concentrations, could increase mesocotyl length significantly, whereas these chemicals at higher concentrations had an inhibitory effect. Endogenous levels of ABA in mesocotyl were measured by enzyme-linked immunosorbent assay. It was found that endogenous ABA increased progressively in a chemical (ABA, mefluidide, mannitol, or PEG 6000) concentration-dependent manner, indicating that the effects of these chemicals on mesocotyl growth may be mediated by increased endogenous ABA levels. On the other hand, S-3307, an inhibitor of the oxidative reactions in gibberellin (GA) biosynthesis, inhibited the elongation of mesocotyl significantly. When ABA and GA3 were applied simultaneously, the effect on mesocotyl growth was additive. These results imply that ABA and GA may control different processes in the regulation of mesocotyl growth. Received October 27, 1997; accepted May 11, 1998  相似文献   

9.
Only one form of membrane-associated cellulase was found previously in the lower petiolar pulvinus of Phaseolus vulgaris (cv Red Kidney). The cellulase has an isoelectric point (pI) of 4.5 (DE Koehler, LN Lewis 1979 Plant Physiol 63: 677-679). This enzyme was detected in abscission zones collected before the onset of abscission (control tissue), and was thought to represent a pre-secretory form of another cellulase, the abscission cellulase, which has a basic pI and is secreted during abscission. We now show that this acidic, membrane-associated cellulase is a glycoprotein, tightly bound to the membrane, with maximum activity at pH 5.1, and that it is not immunologically related to the abscission cellulase. Furthermore, when bean explants are induced to abscise with ethylene, the activity of the acidic cellulase declines rapidly to 50% of control levels in the first day. When abscission is fully developed, the membranes contain a basic form of cellulase with a pI of 8.0 to 9.0 and only trace levels of the acidic cellulase. The basic form is not a high mannose glycoprotein; it has maximum activity in a broad pH range (4.0-8.0) and is antigenically related to the abscission cellulase, which is induced during abscission and transported to the cell wall. Antibody raised against the abscission cellulase recognized two proteins in a crude membrane fraction from abscising tissue. One of those proteins comigrated with the abscission cellulase, and the other was 1 to 2 kilodaltons larger. Thus, during abscission, the acidic membrane-associated cellulase rapidly declines before the appearance of the abscission cellulase. We conclude that there is no conversion from the acidic cellulase to the basic cellulase and suggest that the acidic and basic cellulase isoenzymes are proteins derived from two different genes.  相似文献   

10.
Li  Sijia  Liu  Ruixian  Wang  Xiaojing  Zhao  Liang  Chen  Jian  Yang  Changqin  Zhang  Guowei  Ni  Wanchao  Zhang  Li 《Journal of Plant Growth Regulation》2021,40(4):1667-1673
Journal of Plant Growth Regulation - Thidiazuron (TDZ) has been extensively applied as chemical defoliant in cotton production, but the physiological mechanisms for its defoliating activity are...  相似文献   

11.
12.
This paper describes the physiological effects of abscisic acid (ABA) and 100 mM NaCl on citrus plants. Water potential, leaf abscission, ethylene production, photosynthetic rate, stomatal conductance, and chloride accumulation in roots and leaves were measured in plants of Salustiana scion [Citrus sinensis (L) Osbeck] grafted onto Carrizo citrange (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) rootstock. Plants under salt stress accumulated high amounts of chloride, increased ethylene production, and induced leaf abscission. Stomatal conductance and photosynthetic rates rapidly dropped after salinization. The addition of 10 mM ABA to the nutrient solution 10 days before the exposure to salt stress reduced ethylene release and leaf abscission. These effects were probably due to a decrease in the accumulation of toxic Cl- ions in leaves. In non-salinized plants, ABA reduced stomatal conductance and CO2 assimilation, whereas in salinized plants the treatment slightly increased these two parameters. The results suggest a protective role for ABA in citrus under salinity.  相似文献   

13.
14.
Amelioration of Chilling Injuries in Cucumber Seedlings by Abscisic Acid   总被引:2,自引:0,他引:2  
Exposure of cucumber seedlings (Cucumis sativus L.) to chilling temperature resulted in injuries such as increased leakage of cellular materials, loss of water and wilting. In addition, the development of the seedlings after the exposure to chilling was impaired. Abscisic acid applied to the seedlings prior to chilling significantly ameliorated these injuries.  相似文献   

15.
Adventitious root primordia are found in the pre-hypocotyl tissueof developing seeds of Impatiens balsamina L. by the third weekafter petal drop, and are present in the mature seed. Aftergermination, the adventitious roots emerge from a collet swellingon the hypocotyl of the young seedlings. Removal of the colletduring the first five days results in the formation of anotherat the base of the remaining hypocotyl. Older seedlings respondto the excision of the collet by producing one or more rootsnear the cut end, unless the cut is made close to the cotyledon,when, even in nine-day seedlings, a reduced collet is formedassociated with four or fewer roots. The influence of the cotyledonon collet/root regeneration diminishes in older seedlings andin these is manifested only in hypocotyl tissue adjacent tothat organ. Impatiens balsamina, balsam, cotyledon, adventitious roots, collet  相似文献   

16.
Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 umol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 umol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e. approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that the inhibition of ABA accumulation by AA or GSH was not related to their ROS-scavenging ability. The results of the present study suggest that the redox status in the apoplastic compartment, as determined by AA and DHA, may play a vital role in the regulation of the signaling process for water deficit-induced ABA accumulation.  相似文献   

17.
Potential Role of Abscisic Acid in Cotton Fiber and Ovule Development   总被引:11,自引:0,他引:11  
Fibers and ovules of a cotton cultivar (Gossypium hirsutum L. Trambak-108) were analyzed for growth and free abscisic acid (ABA) content by indirect enzyme immunoassay. An inverse correlation between fiber elongation and ABA content was observed. In the seed, accumulation of ABA was observed during secondary thickening and the maturation phase. The potential role of ABA in fiber and seed development is discussed. Received June 25, 1997; accepted October 15, 1997  相似文献   

18.
The involvement of abscisic acid (ABA) and indole-3-acetic acid (IAA) in the regulation of flowering of Pharbitis nil was investigated through exogenous applications and analyses of endogenous levels. Both hormones inhibited the flowering of P. nil when they were applied before or after a single 15-h dark treatment. The inhibitory effect of ABA and IAA was significant when they were applied before the dark treatment, and the application to plumules was more effective than that to cotyledons. In all applications, the inhibitory effect of IAA was stronger than that of ABA. Endogenous levels of ABA and IAA in the plumules were compared between flower-inductive (15-h dark treatment) and noninductive (continuous light) light conditions. There was no significant difference in the ABA level between light and dark conditions, whereas the level of IAA was decreased by the dark treatment. These results suggest that biosynthesis and/or catabolism of IAA is affected by the light treatment and therefore may be involved in the regulation of early flowering processes in the apex. The inhibitory effects of ABA and IAA were reversed by an application of gibberellin A3, indicating that gibberellin A3 counteracts the flowering processes affected by ABA and IAA. Application of aminoethoxyvinylglycine restored the flowering response inhibited by IAA, which suggests the possibility that the inhibitory effect of IAA is the result of enhanced ethylene biosynthesis. Received November 22, 1996; accepted February 17, 1997  相似文献   

19.
The mechanism of ABA-induced callus formation was studied in sterile bud cultures of Citrus [Citrus sinensis (L.) Osbeck] on defined media. ABA was found to promote callus formation in the abscission zone between the petiole and the branch while inhibiting bud growth. The promoting effect of ABA was dependent on the physiological state of the shoot from which buds were excised, and on the size of the explant. Callus formation was highest in autumn and summer (i.e. younger) buds, and lowest in older buds excised from previous summer flush. GA was only slightly active in promoting callus formation when applied separately, but showed a highly synergistic effect when applied with ABA: maximal callus formation was attained at a combination of 10?5M ABA and 10?6 MGA in the medium. Subcultures of ABA-induced callus revealed that ABA inhibited the growth of isolated subcultured callus, while IAA and kinetin, and especially GA, promoted its rapid proliferation. A general decrease in protein synthesis was found in the abscission zone during the first 5 days of induction, while total protein content changed only slightly. The results suggest that ABA-induced callus formation in Citrus bud explants is a multiphasic phenomenon involving, at least, two stages: (1) activation of certain cells in the abscission zone by ABA, resulting in the formation of callus layers, and (2) subsequent proliferation of the callus tissue, which is dependent on the hormonal balance in the explant. This growth-promoting effect of ABA seems to be a general phenomenon in explants exposing a cut-surface.  相似文献   

20.
Experiments were conducted with field-grown cotton (Gossypium hirsutum L.) in 1985 and 1986 to determine effects of water deficit on levels of conjugated indole 3-acetic acid (IAA) and abscisic acid (ABA) in young fruits (bolls) and their abscission zones in relation to boll retention. Tissues were harvested three times during an irrigation cycle in 1985. They were harvested twice during an irrigation cycle and once after irrigation in 1986 to determine extent of recoveries of measured parameters. As reported earlier, the free IAA content of abscission zones decreased with moisture stress. Irrigation caused a partial recovery in free IAA content of abscission zones and caused a partial recovery in rate of boll retention. In contrast to free IAA, conjugated IAA increased with water deficit, both in 3-day-old bolls and in their abscission zones. Bolls contained much more ester IAA than their abscission zones. Some, but not all, of the increase in ester IAA in bolls during moisture stress could have come from a conversion of amide-linked IAA. Amide IAA decreased slightly during stress and increased after irrigation, but the concentration was low relative to ester IAA. Free and conjugated ABA both increased during stress and decreased after irrigation. However, the concentration of conjugated ABA remained relatively high in abscission zones. Ester IAA, being more resistant than free IAA to enzymic destruction during stress, may hasten recovery of fruit retention after relief of stress by providing a source of free IAA in abscission zones to inhibit continued abscission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号