首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

2.
The physiological role of phenylacetic acid (PAA) as an endogenous regulator of cotyledon abscission was examined using cotton (Gossypium hirsutum L. cv LG 102) seedlings. Application of 100 micromolar or more PAA to leafless cotyledon abscission-zone explants resulted in the retardation of petiole abscission and a decrease in the rise of ethylene evolution that normally accompanies aging of these explants in vitro. The partial inhibition of ethylene evolution in these explants by PAA was indirect since application of this compound stimulated short-term (<24 hours) ethylene production. PAA treatment partially suppressed the stimulation of petiole abscission elicited by either ethylene or abscisic acid. Both free and an acid-labile, bound form of PAA were identified in extracts prepared from cotyledons. No discernible pattern of changes in free or bound PAA was found during the course of ethylene-induced cotyledon abscission. Unlike indole-3-acetic acid, transport of PAA in isolated petiole segments was limited and exhibited little polarity. On the whole, these results are not consistent with the direct participation of PAA in the endogenous regulation of cotyledon abscission.  相似文献   

3.
Abscisic Acid, Auxin, and Ethylene in Explant Abscission   总被引:1,自引:0,他引:1  
Experiments with explants of Phaseolus vulgaris L., cv. CanadianWonder, show that abscission and the associated rise in oarboxymethyl-cellulaseactivity in the separation zone are initiated by a peak in ethyleneproduction during senescence of pulvinar tissue distal to thezone. Distal applications of abscisic acid (ABA) induce an earlierpeak in ethylene production, increase cellulase activity, andpromote abscission. ABA is more effective in these ways if treatmentis delayed from 0 to 24 h after excision. With increasing concentrations of ABA the maximum rate of ethylene production is achievedsooner. Indol-3yl-acetic acid (IAA) and ABA are antagonisticin this system and have opposing effects. IAA retards the timeof peak ethylene-production and delays abscission. Explantsmay be retained for long periods without abscinding if incubatedin an ethylene-free atmosphere: the addition of ethylene forany one 24-h period (except the first 24 h after excision) willinduce abscission. The initial period of insensitivity to ethyleneis extended by distal applications of IAA. Ethylene-inducedabscission can be inhibited by IAA applied up to 72 h afterexcision provided the ethylene is not applied first. It is proposedthat abscission in the explant is controlled at two levels:(1) an auxin-dependent stage determining the duration of insensitivityto ethylene; (2) the timing of a rise in ethylene productionin senescing tissue distal to the separation zone. An auxin-ethylenebalance-mechanism at the separation zone is discussed.  相似文献   

4.
Submergence induces elongation in the petioles of Ranunculus sceleratus L., after a rise in endogenous ethylene levels in the tissue. Petioles of isolated leaves also elongate 100% in 24 hours when treated with ethylene gas, without a change in the radius. Application of silver thiosulfate, aminoethoxyvinylglycine (AVG), abscisic acid (ABA), or methyl jasmonate inhibits this elongation response. Gibberellic acid treatment promotes ethylene-induced elongation, without an effect on the radius. Indoelastic acid (IAA) induces radial growth in the petioles, irrespective of the presence or absence of added ethylene. High concentrations of IAA will also induce elongation growth, but this is largely due to auxin-induced ethylene synthesis; treatment with silver thiosulfate, AVG, ABA, or methyl jasmonate inhibit this auxin-promoted elongation growth. However, the radial growth induced by IAA is not affected by gibberellic acid, and not specifically inhibited by ABA, methyl jasmonate, silver thiosulfate, or AVG. These results support the idea that petiole cell elongation during “accommodation growth” can be separated from radial expansion. The radial expansion may well be regulated by IAA. However, effects of high levels of IAA are probably anomalous, since they do not mimic normal developmental patterns.  相似文献   

5.
Three types of whole plant experiments are presented to substantiate the concept that an important function of ethylene in abscission is to reduce the transport of auxin from the leaf to the abscission zone. (a) The inhibitory effect of ethylene on auxin transport, like ethylene-stimulated abscission, persists only as long as the gas is continuously present. Cotton (Gossypium hirsutum L. cv. Stoneville 213) and bean (Phaseolus vulgaris L. cv. Resistant Black Valentine) plants placed in 14 μl/l of ethylene for 24 or 48 hours showed an increase in leaf abscission and a reduced capacity to transport auxin; but when returned to air, auxin transport gradually increased and abscission ceased. (b) Ethylene-induced abscission and auxin transport inhibition show similar sensitivities to temperature. A 24-hour exposure of cotton plants to 14 μl/l of ethylene at 8 C resulted in no abscission and no significant inhibition of auxin transport. Increasing the temperature during ethylene treatment resulted in a progressively greater reduction in auxin transport with abscission occurring at [unk]27 C where auxin transport was inhibited over 70%. (c) Auxin pretreatment reduced both ethylene-induced abscission and auxin transport inhibition. No abscission occurred, and auxin transport was inhibited only 18% in cotton plants which were pretreated with 250 mg/l of naphthalene acetic acid and then placed in 14 μl/l of ethylene for 24 hours. In contrast, over 30% abscission occurred, and auxin transport was inhibited 58% in the corresponding control plants.  相似文献   

6.
Activities of degrading enzymes, hormones concentration and zymogram patterns were investigated during control and ethylene-induced abscission of tomato pedicel explants. Exogenous ethylene accelerated abscission of pedicel explants. It was showed that IAA concentration in abscission zone tended to decline at first and then was reduced before separation in control and ethylene-treatment. Moreover, IAA (indole acetic acid) and ABA (abscise acid) concentrations were elevated in each segment when exposing to ethylene, but GA1 + 3 (gibberellin1 + gibberellin3) concentration was decreased in abscission zone and the proximal side. Activities of cellulase, polygalacturonase and pectinesterase in the explants were induced in the separating process and strengthened by ethylene. However, comparing with the proximal side, cellulase and polygalacturonase activities in abscission zone and distal side were higher. Electrophoresis of isozymes revealed that at least three peroxidase and three superoxidase isozymes appeared in the explants, respectively. One peroxidase isozyme exhibited differentially among the three positions in control and ethylene-treatment. One esterase isozyme weakened or disappeared in the following hours, but three novel esterase isozymes were detectable from beginning of the process. The data presented support the hypothesis that the distal side, together with abscission zone of explants plays a more important role in separation than does the proximal side. The possible roles of degrading enzymes, hormones and isozymes in three segments during ethylene-induced abscission of tomato pedicel explants are discussed.  相似文献   

7.
A field experiment was conducted during the summer of 1988 to test the hypothesis that water deficit affects the abscisic acid (ABA) and indole acetic acid (IAA) concentrations in cotton (Gossypium hirsutum L.) flower buds in ways that predispose young fruits (bolls) that subsequently develop from them to increased abscission rates. Water deficit had little effect on the ABA content of flower buds but increased the ABA content of flowers as much as 66%. Water deficit decreased the concentrations of free and conjugated IAA in flower buds during the first irrigation cycle but increased them during the second cycle. Flowers contained much less IAA than buds. Water deficit slightly increased the conjugated IAA content of flowers but had no effect on the concentration of free IAA in flowers. Because water deficit slightly increased the ABA content but did not decrease the IAA content of flowers, any carry-over effect of water deficit on young boll shedding might have been caused by changes in ABA but not from changes in IAA.  相似文献   

8.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

9.
Brassica napus L. seedlings responded to low red to far-red (R/FR) ratio by elongating petioles and decreasing leaf expansion. These typical shade avoidance traits were correlated with significantly decreased endogenous indole-3-acetic acid (IAA) levels and significantly increased endogenous abscisic acid (ABA) levels and ethylene production. The transgenic (T) B. napus line bearing the bacterial ACC deaminase gene, did not respond to low R/FR ratio with altered petiole and leaf growth and less ethylene (especially by petioles) was produced. As with WT seedlings, T seedlings had significantly lower IAA levels in both petioles and leaves under low R/FR ratio. However, ABA levels of low R/FR ratio-grown T seedlings either increased (petioles) or were unaltered (leaves). Our results further suggest that low R/FR ratio regulates endogenous IAA levels independently of ethylene, but there may be an interaction between ABA and ethylene in leaf development.  相似文献   

10.
Experiments were conducted with field-grown cotton (Gossypium hirsutum L.) in 1985 and 1986 to determine effects of water deficit on levels of conjugated indole 3-acetic acid (IAA) and abscisic acid (ABA) in young fruits (bolls) and their abscission zones in relation to boll retention. Tissues were harvested three times during an irrigation cycle in 1985. They were harvested twice during an irrigation cycle and once after irrigation in 1986 to determine extent of recoveries of measured parameters. As reported earlier, the free IAA content of abscission zones decreased with moisture stress. Irrigation caused a partial recovery in free IAA content of abscission zones and caused a partial recovery in rate of boll retention. In contrast to free IAA, conjugated IAA increased with water deficit, both in 3-day-old bolls and in their abscission zones. Bolls contained much more ester IAA than their abscission zones. Some, but not all, of the increase in ester IAA in bolls during moisture stress could have come from a conversion of amide-linked IAA. Amide IAA decreased slightly during stress and increased after irrigation, but the concentration was low relative to ester IAA. Free and conjugated ABA both increased during stress and decreased after irrigation. However, the concentration of conjugated ABA remained relatively high in abscission zones. Ester IAA, being more resistant than free IAA to enzymic destruction during stress, may hasten recovery of fruit retention after relief of stress by providing a source of free IAA in abscission zones to inhibit continued abscission.  相似文献   

11.
An experiment was conducted with field-grown cotton (Gossypium hirsutum L.) to determine the effects of drought and an increase in available photosynthate on the abscisic acid (ABA) and indoleacetic acid (IAA) contents of 3-day-old bolls and their abscission zones. Photosynthate availability was manipulated by removing about two-thirds of the plants to permit increased irradiance, and thus photosynthesis, in the plant canopy. The demand for photosynthate was decreased by removing all bolls from the remaining plants. The thinning and defruiting operations were performed about 3 weeks after first flower. Control plants were neither thinned nor defruited. Effects of water deficit were observed by making three harvests at different times during a 2-week irrigation cycle. Increasing the availability of photosynthate increased boll retention, but had relatively little effect on the concentrations of ABA and IAA in bolls. However, it did increase the concentration of IAA in abscission zones. Water deficit increased the ABA content of bolls and abscission zones and decreased the IAA content of bolls and abscission zones. Across all treatments, the IAA content of abscission zones was positively correlated, and the ABA content of bolls was negatively correlated, with boll retention. The results indicate that stresses change the hormonal balance in ways that are consistent with observed increases in fruit abscission.  相似文献   

12.
Hormonal Regulation of Pedicel Abscission in Begonia Flower Buds   总被引:1,自引:0,他引:1  
In order to analyse the hormonal regulation of flower bud shedding in Begonia, levels of indoleacetic acid (IAA), abscisic acid (ABA) and ethylene were determined in buds and pedicels. The translocation and metabolism of 14C-labeled IAA in pedicel segments were also studied. In a monoecious Begonia fuchsioides hybrid, abscising male flower buds contain about 1% of the IAA present in non-abscising female flowers. In a male Begonia davisii hybrid, the seasonal variation in bud drop coincides with changes in the IAA content of the buds, while also the release of IAA from the bud to the pedicel is hampered. Abscission zones of these pedicels always contain abscission promoting ethylene concentrations. The tissue is prevented from responding with abscission by IAA from the flower buds. The buds also contain ABA but without influencing abscission considerably. Pretreatment with ethylene or ABA does not affect IAA transport in pedicel segments. The rate of this transport is 4–6 mm × h–1:; the capacity increases with the transverse area. In young segments, IAA is decarboxylated and also otherwise metabolized.  相似文献   

13.
Guinn G 《Plant physiology》1982,69(2):349-352
The relationships of fruit age, abscisic acid (ABA) concentration, ethylene evolution, and abscission rates were studied in an effort to determine why cotton (Gossypium hirsutum L., cv. Deltapine 16) fruits rarely abscise more than 15 days after anthesis. Because abscission of cotton fruits is increased by conditions that limit photosynthesis, greenhouse-grown plants with fruits of various ages were placed in dim light for 3 days to induce high rates of fruit abscission. Abscission rates, ABA concentrations, and ethylene evolution rates were determined for fruits of various ages. Almost all of the young fruits abscised, but abscission rate declined with age until almost no abscission was observed in fruits that were 15 or more days past anthesis.  相似文献   

14.
The responses of salt‐sensitive citrus rootstocks to 200 m M NaCl were periodically determined on seedlings of citrange Carrizo ( Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) during 30 days. The stressed seedlings adjusted osmotically, reduced stomatal conductance, increased proline content and ethylene production, and showed massive leaf abscission (92%). The salt shock also increased abscisic acid (ABA) and aminocyclopropane‐1‐carboxylic acid (ACC) in roots, xylem fluid and leaves, and in addition promoted Cl accumulation. The pattern of change of ABA, ACC and proline followed a two‐phase response: an initial transient increase (10‐12 days) overlapping with a gradual and continuous accumulation. This biphasic response appears to be compatible with the proposal that the transitory hormonal rises are induced by the osmotic component of salinity, whereas the Cl increase determines the subsequent accumulations. During the second phase, Cl levels correlated with abscission in leaves. Production of leaf ethylene was also concomitant with the increase in the abscission rate. Salt‐induced abscission was either reduced with CoCl2 (52%) or inhibited with silver thiosulphate (14%). The results suggest that in salt‐stressed citrus, leaf abscission is induced by the chloride build‐up through a mechanism that stimulates leaf ACC synthesis and further conversion to ethylene.  相似文献   

15.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

16.
Suttle JC 《Plant physiology》1985,78(2):272-276
The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.  相似文献   

17.
18.
The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.  相似文献   

19.
The petiole abscission induced by deblading cotyledonary leavesof cotton (Gossypium hirsutum L. cv. Delta Pine) was acceleratedby the presence of the intact shoot apex or, in decapitatedplants and explants, by application to the stem (proximal application)of indol-3yl-acetic acid (IAA) or 1-aminocyclopropane-l-carboxylicacid (ACC). IAA and ACC accelerated the abscission of debladedpetioles whether applied above or below the cotyledonary node.Transport of IAA to the node was not required for the responseto proximal IAA. [2,3-14C]ACC was readily transported to thenodal region whether applied to the stem above or below thenode. Application of IAA or ACC to the stem did not induce theabscission of intact leaves or of debladed petioles treateddistally with IAA The acceleration of abscission by proximal IAA, but not thatcaused by ACC, was prevented if explants were treated with a-aminooxyaceticacid (AOA), an inhibitor of ACC-synthase. AOA also preventedthe acceleration of abscission caused by the shoot apex. Theprogress of abscission in debladed explants was greatly delayedby silver thiosulphate (STS—an inhibitor of ethylene action),whether or not the explants were treated with IAA or ACC. Itis suggested that the speeding effects of the shoot apex andof proximal auxin on the abscission of debladed petioles requiresauxin-induced ACC synthesis. The possibility is discussed thatACC may function as a mobile abscission promoter Key words: Abscission, ACC, ACC-synthase, cotton (Gossypium), proximal auxin  相似文献   

20.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号