首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Intracellular recordings were made from identified neurones in the central nervous system of Helix aspersa. Two types of cell were used, those excited by 5-hydroxytryptamine (5-HT) and acetylcholine and those inhibited by 5-HT and dopamine. The actions of a range of 5-HT agonists and antagonists were tested for their ability to interact with 5-HT receptors. 2. 5-Carboxyamidotryptamine, alpha-methyl-5-HT and N-methyl-5-HT were active on cells excited by 5-HT, with similar potencies to 5-HT. Only 5-carboxyamidotryptamine and 5-methoxytryptamine were equiactive with 5-HT on cells inhibited by 5-HT. Most of the non-indole analogues were inactive or very weak agonists on both receptors. 3. MDL 72222 was the most active antagonist tested against 5-HT excitation, showing some selectivity for 5-HT over acetylcholine. Cinanserin and ketanserin also showed selectivity for 5-HT over acetylcholine. 4. Tryptamine was inhibitory on both cell types and was a potent antagonist of 5-HT excitation, showing selectivity for 5-HT over acetylcholine. 5. It is concluded that the 5-HT excitatory receptor recognizes the indole nucleus with substitution on position 5, save for 5-fluorotryptamine which was inhibitory. It does not appear that these 5-HT receptors can be classified in terms of the vertebrate subtypes of 5-HT receptor. However, it should be noted that only two receptor subtypes located on a small number of neurones were studied in these experiments and other 5-HT receptor suptypes may be located on other groups of neurones and peripheral tissues. These receptors may recognize other 5-HT receptor ligands including non-indoles.  相似文献   

2.
1. Intracellular recordings were made from identified neurones in the central nervous system of Helix aspersa. Two types of cell were used, those excited by 5-hydroxytryptamine (5-HT) and acetylcholine and those inhibited by 5-HT and dopamine. The actions of a range of 5-HT agonists and antagonists were tested for their ability to interact with 5-HT receptors.2. 5-Carboxyamidotryptamine, α-methyl-5-HT and N-methyl-5-HT were active on cells excited by 5-HT, with similar potencies to 5-HT. Only 5-carboxyamidotryptamine and 5-methoxytryptamine were equiactive with 5-HT on cells inhibited by 5-HT. Most of the non-indole analogues were inactive or very weak agonists on both receptors.3. MDL 72222 was the most active antagonist tested against 5-HT excitation, showing some selectivity for 5-HT over acetylcholine. Cinanserin and ketanserin also showed selectivity for 5-HT over acetylcholine.4. Tryptamine was inhibitory on both cell types and was a potent antagonist of 5-HT excitation, showing selectivity for 5-HT over acetylcholine.5. It is concluded that the 5-HT excitatory receptor recognizes the indole nucleus with substitution on position 5, save for 5-fluorotryptamine which was inhibitory. It does not appear that these 5-HT receptors can be classified in terms of the vertebrate subtypes of 5-HT receptor. However, it should be noted that only two receptor subtypes located on a small number of neurones were studied in these experiments and other 5-HT receptor subtypes may be located on other groups of neurones and peripheral tissues. These receptors may recognize other 5-HT receptor ligands including non-indoles.  相似文献   

3.
Abstract

5-HT, receptor-mediated ion currents evoked by the full agonists 5-hydroxy-tryptamine (5-HT), quatemary 5-HT (5-HTQ), meta-chlorophenylbiguanide (mCPBG) and the partial agonists dopamine and tryptamine have been investigated in whole-cell voltage clamp experiments on N1E-115 mouse neuroblastoma cells. All agonists desensitize the 5-HT3 receptor completely with a steep concentration dependence and a potency order of: mCPBG > 5-HTQ = 5-HT >> tryptamine > dopamine. The time course of recovery from desensitization depends on the agonist used. Recovery from partial agonist-induced desensitization is single exponential. whereas the desensitization induced by full agonists recovers with sigmoid kinetics, suggesting at least 3 transitions between 4 states. It is concluded that full and partial agonists induce distinct desensitized states.  相似文献   

4.
Rat brain cortex slices preincubated with 3H-5-hydroxytryptamine (3H-5-HT) were superfused with physiological salt solution containing paroxetine, an inhibitor of 5-hydroxytryptamine (5-HT) uptake. The effects of various indolethylamines on the electrically evoked tritium overflow (containing 66.3% unmetabolized 3H-5-HT) were investigated (the percentage of unmetabolized 3H-5-HT was not altered by the indolethylamines or metitepin). 6,7-Dihydroxytryptamine (6,7-DHT) did not affect the stimulation-evoked tritium overflow, whereas the latter was inhibited by the other tryptamine derivatives investigated; when the compounds were compared to each other on the basis of their inhibitory potencies the following rank order was obtained: unlabelled 5-HT > 5-methoxytryptamine > 4-HT > 6-HT > 5,6-DHT > tryptamine > 7-HT > 5,7-DHT. The inhibitory effects of these compounds were antagonized by metitepin. It is concluded that the indolethylamines inhibit the stimulation-evoked 3H-5-HT release by activating the presynaptic 5-HT autoreceptors on the 5-HT neurones of the rat brain cortex. Similarities may exist between these receptors and the postsynaptic 5-HTl binding sites of this brain area.  相似文献   

5.
General characteristics of the cardiovascular responses to intracerebroventricular (i.c.v.) injection of tryptamine, 5-hydroxytryptamine (5-HT), tryptophan and 5-hydroxytryptophan (5-HTP) were compared. Relatively small doses of tryptamine and 5-HT (0.005-0.1 microM) produced considerable, long-lasting and dose-dependent pressor effects, which sometimes were followed by prolonged depressor effects. Tryptophan (0.02-0.5 microM) and 5-HTP (0.02-0.2 microM) caused variable and usually slight, but long-lasting, vascular responses or no vascular response A large dose of tryptamine (0.5 microM) evoked variable vascular effects, while the same dose of 5-HT and 5-HTP evoked marked and prolonged depressor effects. The vascular responses to the drugs were accompanied by variable changes in heart rate. Tryptamine, 5-HT and 5-HTP, in the majority of rats, produced a bradycardia. The present study provides evidence that the cardiovascular response to i.c.v. administration of tryptamine is similar to that of 5-HT, supporting the idea that tryptamine, in addition to 5-HT, participates in the central physiological regulation of the rat cardiovascular system. The role of tryptophan and 5-HTP by themselves in this regulation, if any is of secondary importance.  相似文献   

6.
David Wallis 《Life sciences》1981,29(23):2345-2355
5-HT receptors are present on many types of neurone in the peripheral nervous system (PNS), e.g. sympathetic, parasympathetic, enteric and sensory cells, and mediate complex effects. These include depolarization, cell discharge and facilitation or depression of transmission. If 5-HT receptors can be classified according to the membrane mechanism associated with them, following the system adopted for mollusc neurones, such a classification would have to take into account two kinds of presynaptic and at least four kinds of postsynaptic action. Recent work suggests that a small number of analogues of 5-HT (tryptamine, 5-MOT, LSD) and antagonists (cocaine, methysergide, quipazine) may be useful in differentiating the various kinds of 5-HT receptor in the PNS. It is suggested that no single feature should be relied upon to characterize the receptors; classification might be based on consideration of function, evidence of tachyphylaxis, sensitivity to methysergide, cocaine, etc. On this basis, it is tentatively concluded that there are two kinds of 5-HT receptor mediating excitation in the PNS, neither of which can sensibly be termed an ‘M’ receptor. An interim form of terminology is proposed which makes use of an acronym of the distinctive features. A receptor mediating (E)xcitation, which shows (T)achyphylaxis, is (M)ethysergide (I)nsensitive but is blocked by (C)ocaine might be designated a 5-HTETMIC receptor, while a second which differs because it is insensitive to cocaine but activated by (F)ive-methoxytryptamine might be designated a 5-HTETMIF receptor. Amongst receptors mediating (I)nhibition, the best characterized is one mediating decreased transmitter release and activated by (L)SD. The term 5-HTIL receptor is proposed. A second, post-synaptic inhibitory receptor is likely, but has not been adequately characterized at present.  相似文献   

7.
Pretreatment with acebutolol or propranolol at high concentrations had an inhibitory effect on the contractile response to 5-hydroxytryptamine (5-HT) in most vascular smooth muscles such as rabbit aorta and basilar, mesenteric, renal, femoral arteries and cat coronary artery. The inhibitory actions of both agents were generally greater than on the responses to excess Ca2+ and potassium. In rabbit renal arteries, acebutolol had no effect on the response to 5-HT but inhibited the responses to excess Ca2+ and potassium. Propranolol had a marked inhibitory effect on the response to 5-HT. In all preparations used, the contractions induced by norepinephrine (NE) and histamine showed a much greater resistance to the effect of acebutolol and propranolol than the contractions induced by 5-HT, Ca2+ and potassium. Nifedipine had no inhibitory effect on the response to 5-HT in most of the preparations. Nifedipine inhibited the response to 5-HT only in the basilar arteries. The inhibitory actions of propranolol on the response to 5-HT was greater than that of acebutolol. The inhibitory action of acebutolol and propranolol on the response to 5-HT may be related to mechanisms other than the beta-adrenoceptor blocking action of the drugs. The possible mechanisms of inhibitory action of both beta-adrenoceptor antagonists on 5-HT are discussed.  相似文献   

8.
在74张大鼠下丘脑脑片上,用玻璃微电极记录到弓状核自发放电单位176个,其放电形式有三种:慢不规则型(119个,67.6%);快连续型(46个,26.1%);位相型(11个,6.3%)。5-HT(10-6mol/L,3min)对不同形式放电单位的作用均以抑制为主:对部分慢不规则单位(9/119)则表现为先抑制后兴奋的双相性反应,对少数神经元有兴奋作用。12个被5-HT抑制的单位,其抑制作用不能被噻庚啶(CHD,10-5mol/L)阻断,4个被5-HT抑制的的单位中,其抑制作用可被二甲基麦角新碱(MSG10-6mol/L)部分或完全阻断。7个被5-HT抑制的单位,其中4个单位中,5-HT的抑制作用可被特异性5-HT1A受体阻断剂Pindobind-5-HT1A部分阻断;但另外3个单位的阻断效果不明显。上述结果表明:5-HT对弓状核不同形式放电单位的作用均以抑制为主,其作用可能是通过5-羟色胺(5-HT1)受体介导的,部分还可能是通过5-HT1A受体介导的。  相似文献   

9.
The effects of the molluscan neuropeptide FMRF-amide were tested on several neurones in the suboesophageal ganglia of the snail Helix aspersa. Almost all neurones tested responded to the peptide, some being hyperpolarized (H response) and others depolarized (D response). The H response is due primarily to an inward potassium current and may be blocked in 20 microM 4-aminopyridine. The hyperpolarizing actions of FMRF-amide and dopamine may be separated by ergometrine which blocks the response to dopamine but not to FMRF-amide. The D response is due mainly to an inward sodium current but this is not blocked by d-tubocurarine, morphine or TTX. It appears to be mediated by a distinct receptor/ionophore as excitation by ACh and 5-HT are both antagonized by d-tubocurarine. The Leu2-substituted analogue FLRF-amide was found to produce similar H responses to FMRF-amide, but was much less potent at producing D responses. It did, however, produce cross-desensitization of the D response to FMRF-amide, suggesting that it does bind to the FMRF-amide receptor.  相似文献   

10.
Previous studies indicated that 5-HT reduced the number of spontaneous excitatory junctional potentials (ejp's) that occurred in leech body wall muscle cells. The present study confirms these findings and shows that the ejp's arise from impulses in motoneuron L. This study further shows that 5-HT acts by hyperpolarizing and reducing the membrane resistance of neuron L, thus inhibiting the motoneuron and reducing the frequency of spontaneous ejp's on body wall muscle cells. These effects of 5-HT are not seen when the ganglion is bathed in a high magnesium solution, a finding that suggests that 5-HT does not act directly on the membrane of motoneuron L. This study demonstrates that 5-HT can have a central inhibitory effect on body wall muscle contractions. Previous studies provide evidence that 5-HT may act as a direct neuromuscular inhibitory transmitter and may also take part in peripheral presynaptic inhibition. Thus, if further studies confirm these suggestions, the well-known inhibitory effect of 5-HT on leech body wall muscle is a more complex process than was previously thought.  相似文献   

11.
EFFECTS OF LESIONS AND DRUGS ON BRAIN TRYPTAMINE   总被引:3,自引:2,他引:1  
Abstract— The effects of various drugs and lesions on rat brain 5-hydroxytryptamine and tryptamine were determined. Monoamine oxidase inhibition caused a proportionately greater increase in tryptamine than in 5-hydroxytryptamine, reserpine depleted 5-hydroxytryptamine but had no effect on tryptamine while p -chlorophenylalanine lowered 5-hydroxytryptamine but increased tryptamine. α-Methyl- p -tyrosine reduced striatal dopamine with no effect on either 5-hydroxytryptamine or tryptamine. Increasing brain tryptophan by amphetamine administration. 24 h food deprivation or giving L-tryptophan did not increase brain tryptamine. However a high dose of L-tryptophan (100 or 200mg/kg) together with a monoamine oxidase inhibitor caused a proportionately much greater increase in tryptamine than in 5-hydroxytryptamine. Raphe lesions reduced 5-hydroxytryptamine by 64 per cent and tryptamine by only 29 per cent while intraventricular 6-hydroxydopamine lowered striatal dopamine (56 per cent), had no effect on 5-hydroxytryptamine but reduced tryptamine by 24 per cent, suggesting that tryptamine can be formed in both 5-HT and catecholaminergic neurones.
The results are discussed in relation to the formation, distribution, storage and possible transmitter function of tryptamine in rat brain.  相似文献   

12.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

13.
Abstract— Rats were injected intracerebrally with labelled tryptamine, 5-hydroxytrypt-amine (5-HT) and norepinephrine (NE). The disappearance of the amines and their metabolites as a function of time was determined. Tryptamine disappeared very rapidly, with a half-life of 5 min in normal animals and of 45 min in rats treated with a monoamine oxidase (MAO) inhibitor. The level of radioactive 5-HT declined in two phases, with half-lives of 45 min and 3 h respectively. The 5-hydroxyindoleacetic acid (5-HIAA) that was formed disappeared with a half-life of approximately 1 h. After inhibition of monoamine oxidase, there was only a single phase of 5-HT disappearance (half-life of 4 h). Reserpine decreased and imipramine increased the amount of 5-HT remaining 4 h after injection. Of the NE injected, 12 per cent was converted to methoxyhydroxyphenylglycol sulphate (MHPGS), which disappeared with a half life of 3 h. Reserpine doubled the amount of methoxyhydroxyphenylglycol sulfate formed, but did not alter its rate of disappearance, its peak concentration occurring about 30 min after injection of NE in both control and reserpine-treated rats.  相似文献   

14.
The optically pure enantiomers of the potential atypical antipsychotic agents 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 5) and 5-methoxy-2-{N-[2-(2,6-dimethoxy)benzamidoethyl]-N-n-propylamino}t etralin [5-OMe-(2,6-di-OMe)-BPAT, 6] were synthesized and evaluated for their in vitro binding affinities at alpha1-, alpha2-, and beta-adrenergic, muscarinic, dopamine D1, D2A, and D3, and serotonin 5-HT1A and 5-HT2 receptors. In addition, their intrinsic efficacies at serotonin 5-HT1A receptors were established in vitro. (S)- and (R)-5 had high affinities for dopamine D2A, D3, and serotonin 5-HT1A receptors, moderate affinities for alpha1-adrenergic and serotonin 5-HT2 receptors, and no affinity (Ki > 1000 nM) for the other receptor subtypes. (S)- and (R)-6 had lower affinities for the dopamine D2A and the serotonin 5-HT1A receptor, compared to (S)- and (R)-5, and hence showed some selectivity for the dopamine D3 receptor. The interactions with the receptors were stereospecific, since the serotonin 5-HT1A receptor preferred the (S)-enantiomers, while the dopamine D2A and D3 receptors preferred the (R)-enantiomers of 5 and 6. The intrinsic efficacies at the serotonin 5-HT1A receptor were established by measuring their ability to inhibit VIP-induced cAMP production in GH4ZD10 cells expressing serotonin 5-HT1A receptors. Both enantiomers of 5 behaved as full serotonin 5-HT1A receptor agonists in this assay, while both enantiomers of 6 behaved as weak partial agonists. The potential antipsychotic properties of (S)- and (R)-5 were evaluated by establishing their ability to inhibit d-amphetamine-induced locomotor activity in rats, while their propensity to induce extrapyramidal side-effects (EPS) in man was evaluated by determining their ability to induce catalepsy in rats. Whereas (R)-5 was capable of blocking d-amphetamine-induced locomotor activity, indicative of dopamine D2 receptor antagonism, (S)-5 even enhanced the effect of d-amphetamine, suggesting that this compound has dopamine D2 receptor-stimulating properties. Since both enantiomers also were devoid of cataleptogenic activity, they are interesting candidates for further exploring the dopamine D2/serotonin 5-HT1A hypothesis of atypical antipsychotic drug action.  相似文献   

15.
Hydroid planulae metamorphose in response to an inducing external stimulus, usually a bacterial cue. There is evidence that neurotransmitters participate in the signal transduction pathway of hydroid metamorphosis. Eudendrium racemosum is a colonial hydroid common in the Mediterranean Sea. It lacks the medusa stage and the planulae develop on female colonies during the fertile season. In this work, serotonin (5-HT) was localized in some planula ectodermal cells. Co-localization of serotonin and beta-tubulin suggested that 5-HT was present in sensory nervous cells and in different ectodermal cells. To investigate the role of neurotransmitters in metamorphosis, E. racemosum planulae were treated with serotonin and dopamine and with agonists and antagonists of the corresponding receptors. Serotonin and a serotonin receptor agonist induced metamorphosis, while a 5-HT receptor antagonist inhibited it. Dopamine and all dopaminergic drugs used did not show any significant effect on the onset of metamorphosis. Results from this work showed that 5-HT could stimulate metamorphosis in E. racemosum planulae in the presence of a natural inducer. A mechanism by which this neurotransmitter could act in this phase is proposed.  相似文献   

16.
The concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and noradrenaline (NA) in the rat vas deferens divided in eight or four sections were determined by high performance liquid chromatography with electrochemical detection. Dopamine and NA had the same regional distribution; their concentrations were maximal near the prostatic end and decreased towards the epididymis. The concentration of 5-HT also decreased from the prostatic to the epididimal end, but 5-HT did not follow the same regional distribution as DA and NA. Reserpine (0.02 or 0.2 mg/kg, i.p., 24 hr) and 6-hydroxydopamine (2×80 mg/kg, i.v., 6 days) decreased the contents of DA and NA; the concentrations of both amines were modified to a similar extent. Reserpine also diminished the content of 5-HT. Pargyline (200 mg/kg, i.p., 2 hr) increased the concentration of 5-HT whilep-chlorophenylalanine (300 mg/kg, oral, 3 days) decreased the contents of the amine in some sections of the vas deferens. This study suggests that DA and NA co-exist in the same sympathetic neurons. Some of the 5-HT could be stored in mast cells as previously proposed, but the finding that tissue content of 5-HT changes after inhibiting the deamination or synthesis of the amine suggests that other source(s) of 5-HT distinct from mast cells exist in the rat vas deferens.  相似文献   

17.
The actions of substance P (SP) were tested on central neurones of the snail Helix aspersa, and on the in vitro heart and pharyngeal retractor muscle (PRM). SP was found to show very limited effects in the CNS, but did produce consistent, though weak, inhibition of a group of cells in the right pedal-cerebral connective. On the isolated beating heart 5-hydroxytryptamine (5-HT) produced short latency cardioexcitation, whereas long latency excitation was produced by SP. Electrically-induced contractions of the PRM were found to be inhibited by SP and augmented by the molluscan SP analogue eledoisin, suggesting the presence of separate receptor types in this tissue.Double immunohistochemical staining of sections through the central ganglia for 5-HT and SP revealed that the 2 compounds usually occur in separate neurones, although a few examples showing coexistence were also observed. In the heart, however, all the nerve endings visible were labelled by both antibodies suggesting that two cardioexcitatory compounds, 5-HT and a SP-like peptide, occur together in the same nerve endings in the Helix heart. An assay to measure cAMP levels in homogenized tissue showed that 5-HT and dopamine stimulated cAMP production, whereas production was inhibited by SP, indicating that the actions of cAMP may be mediated via an adenylate cyclase/cAMP system.  相似文献   

18.
R S Jones  A A Boulton 《Life sciences》1980,27(20):1849-1856
The actions of iontophoretically applied tryptamine (T) and 5-hydroxytryptamine (5-HT) were compared on single neurones in the rat somatosensory cortex. The firing rate of the vast majority of neurones tested was depressed by T. However, 5-HT excited and depressed approximately equal numbers of neurones. Depressant effects of 5-HT could be profoundly enhanced by a very weak concurrent application of T (0–10 nA) which itself did not alter the baseline cell firing rate. Excitatory responses to 5-HT were consistently reversed into depressant responses during weak applications of T. These observations could support a modulatory role for endogenous T in 5-HT-mediated transmission in the central nervous system (CNS).  相似文献   

19.
A peripheral nervous system cell line RT4-B, established by Imada and Sueoka (Dev. Biol., 66:97-108, 1978), was shown to respond to serotonin [5-hydroxytryptamine (5-HT)] and catecholamines. 5-HT induced a small and transient increase in cytosolic free Ca2+ concentration ([Ca2+]i) in the RT4-B cells. The increase was effectively blocked by 5-HT2 receptor antagonists (spiperone, ritanserin and mianserin), but not by a 5-HT3 receptor antagonist (MDL72222), or a alpha 1-adrenergic receptor antagonist (prazosin), indicating that RT4-B cells express 5-HT2 receptors. On the other hand, catecholamines increased cyclic AMP production by RT4-B. The order of potency for stimulating cyclic AMP synthesis was isoproterenol greater than epinephrine much greater than norepinephrine much greater than dopamine, and the stimulation was effectively inhibited by the nonselective beta-adrenergic receptor antagonist propranolol, but not by the beta 1-adrenergic receptor antagonist atenolol, suggesting that RT4-B cells express beta 2-adrenergic receptors. The differentiating agent N6,2'-O-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) enhanced the 5-HT-induced [Ca2+]i increase, but not the catecholamine-induced cyclic AMP production. The increase in the 5-HT response paralleled the increase in the density of 5-HT2 receptors. n-Butyric acid (2 mM) and 8-bromoadenosine 3',5'-monophosphate (1 mM) also increased the 5-HT response, and the sum of these increases was nearly equal to that induced by dibutyryl-cAMP. These results indicate that RT4-B is a novel model cell line for the study of 5-HT2 and beta 2-adrenergic receptors and their second messenger responses and for the analysis of the mechanisms how 5-HT2 receptor gene expression is controlled.  相似文献   

20.
The effects of 5-HT and glutamate on dopamine synthesis and release by striatal synaptosomes were investigated and compared with the action of acetylcholine, which acts presynaptically on this system. 5-HT inhibited (28%) synthesis of [14C]dopamine from L-[U-14C]tyrosine, at 10-5M and above. This contrasts with the action of acetylcholine, which stimulated [14C]-dopamine synthesis by 24% at 10-4 M. Tissue levels of GABA were unaffected by either 5-HT or acetylcholine up to concentrations of 10-4 M. The inhibitory action of 5-HT (5 × 10?5 M and 2 × 10?4 M) on [19C]dopamine synthesis was completely abolished by methysergide (2 × 10?6 M). Higher concentrations of methysergide (10?4 M) or cyproheptadine (10?5 M) inhibited [14C]dopamine synthesis by 28% and 25%, respectively, when added alone to synaptosomes. However, only methysergide prevented the further inhibition of synthesis caused by 5-HT. At concentrations of 2 × 10?5 M and above, 5-HT stimulated [14C]dopamine release. This releasing action differed from that of acetylcholine, which occurred at lower concentrations (e.g., 10?6 M). Methysergide (up to 10?4 M) or cyproheptadine (2 × 10?4 M) did not reduce the 5-HT (5 × 10?5 M)-induced release of [14C]dopamine, but methysergide (10?4 M) showed a potentiation (49%) of this increased release. The stimulatory effects of 5-HT (2 × 10?5 M) and K+ (56 mM) on [14C]dopamine release were additive, indicating that two separate mechanisms were involved. However, when both agents were present the stimulatory effect of K+ (56 mM) on [14C]dopamine synthesis was not seen above the inhibitory effect of 5-HT. Glutamate (0.1-5 mM) did not affect [4C]dopamine release or its synthesis from L-[U-14C]tyrosine. It is concluded that 5-HT modulates the synthesis of dopamine in striatal nerve terminals through a presynaptic receptor mechanism, an action antagonised by methysergide. The releasing action of 5-HT apparently occurs through a separate mechanism which is also distinct from that involved in the response to K+ depolarisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号