首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为考察干酪乳杆菌典型株ATCC393在交互胁迫环境下的生理应答机制,应用二维电泳和iTRAQ技术在蛋白水平上比较了交互胁迫前后干酪乳杆菌蛋白质组的变化情况。在对不同处理条件下细胞全蛋白的二维电泳分析中发现,干酪乳杆菌的主要蛋白分布在等电点pI4~7的范围,经酸预适应处理后细胞的蛋白表达产生了较大的变化。通过iTRAQ技术对细胞在酸适应前后以及相应致死条件下蛋白表达的定性及相对定量分析得知,酸诱导所产生的热胁迫应激蛋白(dnaK,dnaJ等)、氧胁迫应激蛋白(mutS,YeaO)以及与代谢相关的酶类上调可能是提高细胞对交互胁迫耐受能力的主要原因,而酸适应后GTP环化水解酶I和GMP合成酶的高表达可能与这一过程的诱导有关。上述研究结果为提高工业生产菌株在发酵生产及加工过程中对外界不利环境的抵御能力,进而通过调控与微生物生理应答机制密切相关的功能元器件实现生产菌株的性能强化提供了重要的生物信息和可借鉴的研究思路。  相似文献   

2.
薛峰  张娟  堵国成  陈坚 《微生物学报》2010,50(4):478-484
【目的】以干酪乳杆菌典型株ATCC 393TM(Lactobacillus casei ATCC 393TM)为实验菌株,研究其在多重胁迫环境下的交互保护应答机制。【方法】比较不同亚适应条件(热、H2O2、酸、胆盐)处理后菌体细胞在热致死条件(60℃)及氧致死条件H2O2(5mmol/L)下的存活率变化,并集中考察了最佳亚适应条件-酸适应的不同处理方式对细胞交互保护存活率、胞内pH以及脂肪酸含量的影响。【结果】交互保护对干酪乳杆菌ATCC393生理活性的影响因亚适应及致死条件而异:酸胁迫预适应能够显著提高细胞的交互胁迫抗性,其中,盐酸预适应的交互保护效果优于乳酸,其预适应引发的生理应答效应使细胞在应对热致死和氧致死胁迫时存活率分别提高了305倍和173倍;进一步的研究表明,酸预适应提高细胞存活率的作用机制可能与其能够显著改善胁迫环境下的胞内pH和细胞膜脂肪酸不饱和度相关。【结论】盐酸预适应对干酪乳杆菌典型株ATCC393的交互保护作用最为显著,并能够维持胁迫条件下细胞生理状态的相对稳定,本研究将有助于进一步解析干酪乳杆菌在对抗不同胁迫环境的过程中生理应答机制间的相互作用关系。  相似文献   

3.
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.  相似文献   

4.
Adhesion to the intestine represents a critical parameter for probiotic action. In this study, the adhesion ability of Lactobacillus casei ATCC 393 to the gastrointestinal tract of Wistar rats was examined after single and daily administration of fermented milk containing either free or immobilized cells on apple pieces. The adhesion of the probiotic cells at the large intestine (cecum and colon) was recorded at levels ≥6 logCFU/g (suggested minimum levels for conferring a probiotic effect) following daily administration for 7 days by combining microbiological and strain-specific multiplex PCR analysis. Single dose administration resulted in slightly reduced counts (5 logCFU/g), while they were lower at the small intestine (duodenum, jejunum, ileum) (≤3 logCFU/g), indicating that adhesion was a targeted process. Of note, the levels of L. casei ATCC 393 were enhanced in the cecal and colon fluids both at single and daily administration of immobilized cells (6 and 7 logCFU/g, respectively). The adhesion of the GI tract was transient and thus daily consumption of probiotic products containing the specific strain is suggested as an important prerequisite for retaining its levels at an effective concentration.  相似文献   

5.
The biochemical and biophysical properties of the membrane and some general characteristics of the response of Lactobacillus casei ATCC 393 (reclassified Lactobacillus zeae) to hyperosmotic conditions were studied. Under hypertonic conditions, the hydrophobicity and the bile salt sensitivity of the cultures were increased. The glycolipid AcylH3DG is only present in membranes of NaCl containing medium, whereas, H4DG undergoes a significant increment and H2DG a significant decrease. The fluidity of both the purified membranes and the total lipid vesicles, as determined with the fluorescent probe DPH, did not change in conditions of high salinity. This was coincident with changes in the fatty acid (FA) composition where an increase in the saturated/unsaturated FA ratio was compensated by a rise in the fluidifying 11,12-methyleneoctadecanoic FA (cyc 19:0). Under osmotic stress conditions, Laurdan and acridine orange in total lipid vesicles showed increased lateral lipid packing and proton permeability, respectively.  相似文献   

6.
The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting signal of the proteinase, PrtP, of L. casei, CbsA was presented at the surface, rendering the transformants able to bind to immobilized collagens.  相似文献   

7.
Lactococcus lactis subsp. lactis CNRZ 1123, a Lac- derivative of CNRZ 1122 was transformed by electroporation with the Lactobacillus casei ATCC 393 plasmid pLZ15, which bears a β-galactosidase gene. The transformants expressed a constitutive β-galactosidase activity at a higher level than in Lact. casei , and in the cell-free extract two additional protein bands were detected by SDS-PAGE which could correspond to lactose metabolism enzymes. Both plasmid and β-gal activity were stable in Lactococcus after 100 generations in glucose-containing medium.  相似文献   

8.
Lin TH  Tsai KC  Lo TC 《Protein engineering》2003,16(11):819-829
The tertiary structure of the central catalytic domain of insertion sequence ISLC3 isolated from Lactobacillus casei ATCC 393 was predicted using the homology modeling approach. The novel insertion sequence was isolated by us from the template bacteriophage phiA3 of L.casei ATCC 393. The number of amino acid residues of the ISLC3 central catalytic domain was 116 and was treated as the query sequence. There were five Web-available threading methods used to find some primary structure templates for the query sequence. These primary templates were further screened using the SWISS-MODEL Protein Modeling Server and the default parameter settings therein to give six final structure templates. All of these final structure templates were the integrase (IN) protein of retroviruses. Multiple sequence alignment using these IN sequences against the query one revealed the signature DDE motif. Based on the structures of these final templates, the structure of the query sequence was constructed using the InsightII/Discover/Homology programs. A metal ion, Mg(2+), was inserted into the center of the putative catalytic pocket formed by the DDE residues of the predicted structure in the final rounds of refinement by molecular dynamics (MD) simulations. The structure with a metal ion included was designated with Mg and that without a metal ion was designated free Mg. The average exposed surface area of some hydrophobic residues of both the predicted free Mg and with Mg structures were computed and compared with those computed for the six structure templates. Whereas the predicted with Mg structure was slightly more exposed than the predicted free Mg structure, the former appeared to be more stable than the latter, as revealed by the lower conformation energy recorded for the former during the structure refinement by MD simulations. To verify further the predicted structures, the coordinates of both predicted structures were fed into the ERRAT Protein Verification Server. It was found that the quality of the predicted with Mg structure was much better than that of the free Mg structure. The validation results also indicated that regions of the predicted with Mg structure that can be rejected at the 95% confidence level were approximately 20% whereas those which can be rejected at the same level for the six structure templates were approximately 10%. The predicted with Mg structure was also docked into a short oligonucleotide representing the substrate of the ISLC3 transposase using the DOCK_4.0.2 program. It was found that both Glu140 and Asp68 residues of the DDE motif of the predicted with Mg structure were able to form hydrogen bonds with the DNA substrate, which was similar to what was observed in a docking study using the retrovirus IN 1asu and its DNA substrate.  相似文献   

9.
A derivative of Lactobaccillus casei ATCC 7469, characterized by limited growth in liquid media and an unusual phospholipid composition, has been isolated. Grown to early stationary phase on a lipid-free and inositol-free medium, the organism produces phosphatidylinositol phosphatidylglycerol, and diphosphatidylglycerol. The phosphatidylinositol was identified by thin-layer, paper, and gas chromatography, and by mass spectrometry. In agreement with published data, the conventional strain produced phosphatidylglycerol, diphosphatidylglycerol, and lysylphosphatidylglycerol, but no phosphatidylinositol. The phospholipid/glycolipid molar ratio, calculated on the basis of published glycolipid analyses, is 1.3 : 1 for the derivative and 1.5 : 1 for the conventional strain.  相似文献   

10.
The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota.  相似文献   

11.
12.
Lipoteichoic acid (LTA) from Lactobacillus casei YIT 9018 or Lactobacillus fermentum YIT 0159 augmented the resistance of C57BL/6 mice to infection with Pseudomonas aeruginosa, but conferred no resistance to Listeria monocytogenes. It is suggested that LTA was unable to activate macrophages.  相似文献   

13.
14.
Cell wall, cytoplasm, polysaccharide, and peptidoglycan fractions prepared from Lactobacillus casei, L. plantarum, and L. acidophilus were examined for their efficacies to enhance resistance of host mice against Listeria monocytogenes infection. Intraperitoneal injections of those cellular fractions of L. casei led to elicitation of inflammatory cells in the peritoneal cavity and the efficacy was highest in the case of peptidoglycan. Macrophage ratio in the resultant peritoneal exudate cells was also highest in mice given peptidoglycan. Macrophages induced with cell wall fraction of L. casei showed the most potent phorbol myristate acetate (PMA)-triggered respiratory burst (chemiluminescence and O2- production determined on the basis of nitroblue tetrazolium reduction) followed by those elicited with peptidoglycan. All the macrophages induced with cell wall of L. casei (two strains) and L. acidophilus enhanced O2- production in response to PMA but L. plantarum did not enhance O2(-)-producing ability in such a manner. The L. casei-cell wall also enhanced in vitro listericidal activity of mouse peritoneal macrophages, but such an activity was not noted in the case of L. acidophilus-cell wall. When mice were intravenously given the cellular fractions 7 or 13 days before L. monocytogenes infection, cell wall fractions of L. casei caused the most potent protective activity. A weak protective activity was also found in peptidoglycan of L. casei. Therefore, the protective action of L. casei against L. monocytogenes infection in host mice may be attributed to cell wall compounds and partially to the peptidoglycan moiety.  相似文献   

15.
Most strains of Lactobacillus casei tested were found to be nisin-resistant. The addition of nisin to a growing culture of a resistant strain stopped growth for several hours; however, growth then resumed at the previous rate. Nisin induced a resistance mechanism that was lost by one passage in nisin-free medium. During induction with nisin, the cells produced an anionic, phosphate-containing polysaccharide with the subunits rhamnose and galactose. This polysaccharide protected sensitive cells of L. casei against the bactericidal action of nisin. Received: 27 July 1995 / Accepted: 30 October 1995  相似文献   

16.
The functions of liver macrophages and peritoneal macrophages obtained after injection of Lactobacillus casei were examined. Listericidal activity in vivo was enhanced in liver macrophages 13 days after L. casei injection but was somewhat suppressed in the macrophages 2 days after the injection. The listericidal activity in vitro was enhanced in peritoneal macrophages obtained 13 days after L. casei injection but was suppressed in cells obtained 2 days later. The PMA-triggered respiratory burst in the liver macrophages elicited by L. casei was higher than that of resident macrophages. Alkaline phosphodiesterase activity in the liver macrophages was decreased by L. casei injection, as was also the case with peritoneal macrophages. These observations indicate that L. casei augmented cellular functions of both liver and peritoneal macrophages.  相似文献   

17.
18.
重组干酪乳杆菌在模拟消化环境中生存性能的研究   总被引:6,自引:0,他引:6  
目的 探讨重组干酪乳杆菌Lactobacillus casei 393在模拟胃肠道环境中的存活能力.方法 人工模拟胃肠道环境,即人工胃液(pH=1.5~4.5)、人工肠液、胆汁(质量浓度0.3~3.0 g/L)和高盐(质量浓度40~90g/L).结果 重组干酪乳杆菌在pH为2.5~4.5的人工胃液中具有较强的生存能力,3 h活菌数仍达108/ml;在人工肠液中经过不同时间的作用后,重组干酪乳杆菌显出生长趋势;在0.3%的胆汁环境作用8 h仍有存活,且能耐受7%NaCl浓度的高渗环境.结论 实验为干酪乳杆菌Lactobacillus casei 393能否作为益生菌制剂在胃肠道中发挥作用提供了理论基础.  相似文献   

19.
The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca2+ and not as free citrate or the Mg2+-citrate complex, thereby identifying Ca2+-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca2+ and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca2+-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca2+-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca2+-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca2+-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages.  相似文献   

20.
The identification of cell determinants involved in probiotic features is a challenge in current probiotic research. In this work, markers of bile tolerance in Lactobacillus casei were investigated using comparative proteomics. Six L. casei strains were classified on the basis of their ability to grow in the presence of bile salts in vitro. Constitutive differences between whole cell proteomes of the most tolerant strain (L. casei Rosell-215), the most sensitive one (L. casei ATCC 334), and a moderately tolerant strain (L. casei DN-114 001) were investigated. The ascertained subproteome was further studied for the six strains in both standard and bile stressing conditions. Focus was on proteins whose expression levels were correlated with observed levels of bile tolerance in vitro, particularly those previously reported to be involved in the bile tolerance process of lactobacilli. Analysis revealed that 12 proteins involved in membrane modification (NagA, NagB, and RmlC), cell protection and detoxification (ClpL and OpuA), as well as central metabolism (Eno, GndA, Pgm, Pta, Pyk, Rp1l, and ThRS) were likely to be key determinants of bile tolerance in L. casei and may serve as potential biomarkers for phenotyping or screening purposes. The approach used enabled the correlation of expression levels of particular proteins with a specific probiotic trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号