首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of white clover is very sensitive to the lightenvironment, especially to the ratio of red:far-red light andto photon irradiance. However, less is known about the effectsof blue light on clover morphogenesis. Cuttings of white cloverwere grown for 56 d in two controlled chambers receiving lightwith similar photosynthetic efficiency and phytochrome photoequilibriumstate but different levels of blue light: some plants were grownunder orange light (very low blue light, 0.02 µmol m-2s-1)or under white light containing blue light (83 µmol m-2s-1).Other plants were switched from white light to orange lightorvice versa,after 30 d. The absence of blue light modifiedthe growth habit of clover and raised the laminae in the upperlayer of the canopy by increasing petiole length, and petioleangle from the horizontal, and by raising stolons above theground surface. Moreover, the absence of blue light had no effecton total leaf area and total dry weight per plant, but increasedthe leaf area and biomass of petioles of the main axis. Largerpetioles and laminae were associated with the allocation ofmore dry weight to the petiole at the same petiole thicknessbut with thinner laminae. These results indicate that a decreasein blue light is involved in the perception of, and adaptationto, shading by the plant.Copyright 1997 Annals of Botany Company Biomass allocation; blue light; growth habit; leaf area; light quality; photomorphogenesis; Trifolium repensL.; white clover  相似文献   

2.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

3.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

4.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

5.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg–1) or low (40 µg g–1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis  相似文献   

6.
A method was developed for assessing the three dimensional (3-D)geometric structure of white clover canopies. 3-D co-ordinatesof pre-defined points on leaves, petioles and stolons were measuredusing a Polhemus Fastrak electromagnetic 3-D digitiser. Digitisingprogressed downwards from the top of the canopy and plant partswere removed after they have been digitised. Leaflets were treatedas four quarter-ellipses, and petiole and stolons were treatedas cylinders. Leaf dimensions and areas calculated from 3-Dco-ordinates were within about 5% and 20% of direct measurementsmade with a ruler and a planimeter, respectively. Special softwareand freeware POV-Ray were used to reconstruct a virtual canopyfrom digitiser records and to calculate canopy characteristicssuch as leaf area index (LAI), petiole intersection area, andprofiles of leaflet areas and inclinations with height. It tookbetween 3 and 7 h to digitise 10 x 10 cm stands of clover andthe resulting information was considerably more comprehensiveand accurate than could have been obtained by the alternative‘point quadrat’ or ‘stratified clipping’methods.Copyright 2000 Annals of Botany Company White clover, Trifolium repens, geometric structure, leaf area, leaf angle, 3-D digitising  相似文献   

7.
The application of nitrogenous fertilizer in March to a whiteclover (cv. Blanca) and perennial ryegrass (cv. S23) sward resultedin a rapid suppression of the clover, relative to clover ina treatment given no added nitrogen. Thereafter, the cloverin both treatments grew more rapidly than the grass and itsproportion of the total leaf area in the mixture increased,as the leaf area index rose to 8. After a second applicationof N in early July, clover was not suppressed to the same extentas in the first growth period. Overall, the photosynthetic capacities of newly expanded cloverlaminae were similar in the two treatments. Clover laminae hadhigher photosynthetic capacities than grass, even in the grass-dominant+ N treatment. Lamina area, petiole length, and the number of live leaves perstolon were similar in the two treatments, indicating that thedifferences in total leaf area were due to the presence of fewerstolon growing points in the + N treatment. Trifolium repens L., white clover, Lolium perenne L., perennial ryegrass, nitrogen, leaf area index, photosynthesis, growth  相似文献   

8.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

9.
Plant canopies can be considered as assemblages of leaves, stemsand fruits growing in zones of differing irradiance demarcatedby contours of mean irradiance as measured on a horizontal surface. The following general equations have been derived to calculatethe leaf area (LI) and the canopy volume (CVI) in zones externalto any chosen contour of mean irradiance: (1) LI = ((1nl)/(–K)(I–Tf) or leaf area index (LAI) if this is less (2) CVI = LI/(leaf area density m2 m–2), where I is the specified value of irradiance (horizontal surface)expressed as a decimal fraction of that above the canopy, Kis the appropriate extinction coefficient and Tf is the proportionof the total of available radiation which, if the canopy isdiscontinuous, would reach the ground by passing through gapsbetween the discrete canopy units. Where the canopy is continuousTf is zero so expression (1) simplifies to L1 = 1n I/–K(or LAI if this is less). For a range of model hedgerow orchards of varying dimensions,spacings and LAIs, it has been shown that the use of these equationsgives very similar results to those obtained by detailed calculationof light penetration. They therefore seem to be of potentialuse in calculating both potential dry-matter production by discontinuouscanopies of any type and, in the case of orchard fruit crops,the potential effect of changes in tree size, leaf area density,spacing etc. on the canopy volume in which irradiation is adequatefor fruit bud initiation and fruit colour development. light distribution, discontinuous canopy, irradiance contours, leaf area index, orchards  相似文献   

10.
Radiation Interception, Partitioning and Use in Grass -Clover Mixtures   总被引:2,自引:0,他引:2  
Mixed swards of perennial ryegrass /white clover were grownin competition under controlled environmental conditions, attwo temperatures and with different inorganic nitrogen supplies.The swards were studied after canopy closure, from 800 to 1200°C d cumulative temperatures. Clover contents did not varysignificantly during the period. A simulation model of lightinterception was used to calculate light partitioning coefficientsand radiation use efficiencies for both components of the mixturein this controlled environment experiment. Additionally, thissame radiative transfer model was applied to the field datafrom Woledge (1988) (Annals of Applied Biology112: 175 –186)and from Woledge, Davidson and Dennis (1992) (Grass and ForageScience47: 230 –238). The measured and simulated valuesof light transmission, at different depths in the mixed canopy,were highly correlated (P<0.001) with more than 80% of thetotal variance explained. The daily average of photosyntheticallyactive radiation (PAR) interception in a natural environmentwas estimated from simulations, for the field and controlledenvironment data. Under these conditions, white clover capturedsignificantly more light per unit leaf area than perennial ryegrassat low, but not at high, nitrogen supply. In the controlled environment experiment, the radiation useefficiency of the legume was lower than that of its companiongrass. For both species, radiation use efficiency was negativelycorrelated with the mean irradiance of the leaf. The role ofa compensation between light interception and light use forstabilizing the botanical composition of dense grass –cloverswards is discussed. Light interception; radiation transfer model; growth analysis; radiation use efficiency; white clover; perennial ryegrass; Trifolium repensL.; Lolium perenneL.; grassland  相似文献   

11.
White clover (Trifolium repens L.) and Perennial ryegrass (Loliumperenne L.) plants were grown, in Perlite, in simulated swardsas either monocultures or mixtures of equal plant numbers. Theywere supplied with a nutrient solution either high (220 µgg–1) or low (40 µg g–1) in 15N-labelled nitrateand grown to ceiling yield at either high (20°C day/15°Cnight) or low (10°C day/8°C night) temperature. Temperature had little effect on the maximum rates of grosscanopy photosynthesis which were similar in High-N grass andHigh-N and Low-N clover monocultures. However these maxima werereached more slowly in clover than grass, and more slowly atlow rather than high temperature. Nitrogen supply increasedphotosynthesis in grass but not in clover. Clover had higherN contents than grass in all four treatments, although in anygiven treatment its N content was lower, and contribution ofN2-fixation relative to nitrate uptake higher, in mixture thanin monoculture. Conversely, grass had higher N contents in mixturethan monoculture, because more nitrate was available per plantand not because of transfer of biologically fixed N from clover. Under Low-N, clover outyielded grass in mixture, particularlyat high temperature. The grass plants in the Low-N mixtureshad higher N contents and higher SLA, LAR and shoot: root ratiosthan those in monoculture. It is proposed that competition forlight is the cause of the low relative yield and negative aggressivityof grass in these swards. Under High-N, grass outyielded cloverin monoculture and mixture, at both temperatures but particularlyat low temperature when grass had a high aggressivity. Nitrogenand yield component analyses shed no light on clover's apparentlylow competitive ability and evidence is drawn from the previouspaper to demonstrate that grass grew faster than clover onlyas spaced individuals during non-com petitive growth. The relativemerits of measures of competitive ability based on final harvestdata and physiological data taken over a growth period are discussed. Trifolium repens L., white clover, Lolium perenne, perennial ryegrass, competition, temperature, nitrogen  相似文献   

12.
Single plants of white clover grown in controlled environments,and dependent for nitrogen on N, fixation, were defoliated at1 or 2 d intervals to 3, 2 and 1 expanded leaves per stolon(Expt 1), and to 1,0.5 (1 leaf on every alternate stolon) and0 expanded leaves per stolon (Expt 2), for 43–50 days Plants adapted to severe defoliation by developing much smallerleaves with a slightly reduced specific leaf area, more stolons,a smaller proportion of weight in leaf, root and nodules anda greater proportion of weight in stolons. The daily yield (materialremoved by defoliation) of d. wt and nitrogen generally decreasedwith severity of defoliation, as did the residual plant weight.However, the ‘efficiency’ of yield (daily yield/residualweight x 100) of dry matter and nitrogen was greater in themost severely defoliated treatments, attaining a maximum of5–6 % All plants adapted to the imposed defoliation regimes, howeversevere, with the result that even plants maintained withoutany fully expanded leaves invested a similar fraction of theirmetabolic resources in shoot and root as less severely defoliatedplants, and continued to grow and fix N2, albeit at a very reducedrate of 1–2 mg Nd–11. The energetic cost of N2 fixation(acetylene reduction) remained constant in all treatments at31 mole CO2 mole C2H4–1, but there was some evidence thatrate of N2 fixation per unit of nodule weight declined in themost harshly defoliated treatment. Trifolium repens, white clover, continous defolation, growth, N2 fixation  相似文献   

13.
Alt  C.; Stutzel  H.; Kage  H. 《Annals of botany》2000,85(6):779-787
A simple model of photosynthesis is described which is dependenton leaf area, organic nitrogen content and distribution withinthe canopy as well as on the light and temperature environments.The model is parameterized using a cauliflower crop as an example.The optimized protein-N profile within the canopy is calculatedwith respect to daily growth rate. By comparison with measuredprotein-N contents, the amount of super-optimal N-uptake, i.e.the N-uptake which does not increase productivity, is assessedfor two different nitrogen and light treatments. The amountof super-optimal N accumulated in cauliflower depends on N-supplyand can exceed 80 kg N ha-1. Copyright 2000 Annals of BotanyCompany Brassica oleracea L. botrytis, cauliflower, nitrogen, photosynthesis, respiration, model, optimization  相似文献   

14.
Light Distribution and Photosynthesis in Field Crops   总被引:7,自引:1,他引:6  
In a new model of light distribution in field crops a parameters is the fraction of light passing through unit leaf layer withoutinterception. Radiation profiles measured with solarimetersand photocells give values of s from 0.7 for grasses to 0.4for species with prostrate leaves. Knowing s, leaf transmissionT and leaf-area index L the light distribution in a field cropmay be described by a binomial expansion of the form {s+(I-s)T)L.To calculate crop photosynthesis at given light intensity thisexpansion is combined with two parameters describing the shapeof the light-response curve of single leaves. Finally, the assumptionthat solar radiation varies sinusoidally allows daily totalphotosynthesis to be estimated from daylength and insolation. The theory predicts about the same potential photosynthesisin a cloudy temperte climate with long days as in a more sunnyequatorial climate with short days. When L < 3 photosynthesisincreases as s decreases, i.e. as leaves become more prostrate;but when L > 5, photosynthesis increases as s increases,i. e. as leaves become more erect. Assuming that respirationis proportional to leaf area, estimated dry-matter productionagrees well with field measurements on sugar-beet, sugar-cane,kale, and subterranean clover. Estimates of maximum gross photosynthesis(for sugar-cane and maize) range from 60 to 9 g m–2 day–1depending on insolation.  相似文献   

15.
During vegetative growth, the vertical profile of leaf nitrogen(N) often parallels the profile of light distribution withinthe canopy. This is more advantageous in terms of canopy photosynthesisthan a uniform distribution of leaf N. We investigated the influenceof both reproductive growth and N supply on the profiles ofN and light in canopies of irrigated cotton crops (Gossypiumhirsutum L.). Regular samplings were made from soon after theonset of reproductive growth until crop maturity. Every 2 weeks,a 1 m2sample of the canopy was cut in four successive verticallayers of equal thickness. Leaf area and N concentration (%)in each layer were measured. The vertical N gradient becamemore marked with ongoing reproductive development. It is hypothesizedthat because of the high rate of growth after the onset of reproductivedevelopment and the long duration of this phase compared toother species, the whole canopy photosynthetic benefit thatwould accrue from maintaining the N gradient is likely to beaccentuated. The rate of decline in leaf N concentration ina layer was not related to either the initial concentrationin the leaves nor the boll load within the layer.Copyright 2001Annals of Botany Company Gossypium hirsutum, leaf nitrogen, light profile, nitrogen, nitrogen distribution, remobilization, reproductive growth  相似文献   

16.
Clonal plants of white clover (Trifolium repens L ), whollydependent on N2 fixation, were grown for 6 weeks in controlledenvironments providing either (C680 regime) 23/18 °C day/nighttemperatures and a CO2, concentration of 680 µmol mol–1,or (C340 regime) 20/15 °C day/night temperatures and a CO2,concentration of 340 µmol mol–1 During the firsthalf of the experimental period the C680 plants grew fasterthan their C340 counterparts so that by week 3 they were twicethe weight this 2 1 superiority in weight persisted until theend of the experiment The faster initial growth of the C680plants was based on an approx 70 % increase in leaf numbersand an approx 30 % increase in their individual area Initially,specific leaf area (cm2 g–1 leaf) was lower in C680 thanin C340 leaves but became similar in the latter half of theexperiment Shoot organ weights, including petioles and stolons,reflected the C680 plant's better growth in terms of photosyntheticsurface Throughout, C680 plants invested less of their weightin root than C340 plants and this disparity increased with timeAcetylene reduction assays showed that nitrogenase activityper unit nodule weight was the same in both C680 and C340 plantsBoth groups of plants invested about the same fraction of totalweight in nodules Nitrogen contents of plant tissues were similarirrespective of growth regime, but C680 expanded leaves containedslightly less nitrogen and their stolons slightly more nitrogenthan their C340 counterparts However, C680 leaves containedmore non-structural carbohydrate Young, unshaded C680 leavespossessed larger palisade cells, packed more tightly withinthe leaf, than equivalent C340 leaves The reason for the C680regime's loss of superiority in relative growth rate duringthe second half of the experiment was not clear, but more accumulationof non-structural carbohydrate, constriction of root growthand increased self-shading appear to be the most likely causes Trifolium repens, white clover, elevated CO2, elevated temperature, growth, N2 fixation, leaf structure  相似文献   

17.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

18.
Swards of subterranean clover (Trifolium subterraneum L.) atLAl 6 grown in N-free nutrient solution were subjected to threedefoliation treatments which removed 30, 70 and 80% of shootdry weight. Subsequent regrowth and changes in the concentrationsof carbohydrate and nitrogen in plant components were measuredat 0, 1, 5, 9 and 13 d after defoliation and compared with thosein uncut swards. The rate of shoot regrowth declined with increasing severilyof defoliation. In all defoliation treatments, growth was confinedto leaves for up to 5 d. Root growth ceased in all treatmentsfor a longer period. Reestablishment of the leaf area in severely-defoliatedswards was facilitated by the rapid opening of developing leavesand by changes in the allocation of carbon which favoured leafover branch and root, and lamina over petiole growth. Loss of carbohydrate and nitrogen from roots and branches lasting5–9 d was observed in the more severe defoliation treatments.Loss of protein (N x 6.25) exceeded that of total non-structuralcarbohydrate, and could have accounted for the nitrogen contentof new leaf during this period. Branches lost 62% of their initialcarbohydrate content compared with 25% from roots in the 80%cut swards. In contrast, roots, by virtue of their greater mass,were the principle source of mobilized nitrogen. Nitrogen accumulationceased in 80% cut swards for 9 d. However, carbohydrate levelsin the crown nodules were not severely depleted. It was concluded that partitioning of growth to lamina and themobilization of carbohydrates and nitrogen were important forrecovery from defoliation. Carbohydrates, carbon partitioning, defoliation, nitrogen, mobilization, regrowth, subterranean clover, Trifolium subterraneum L  相似文献   

19.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

20.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号