首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monospecific antibodies to mouse epidermal keratins were generated in rabbits and guinea pigs by injecting synthetic peptides of unique keratin sequences. The sequences were deduced from nucleotide sequences of cDNA clones representing basal (K14) and suprabasal (K1 and K10) cell-specific and hyperproliferative (K6) keratins of both the type-I and type-II subclasses. By applying single-and double-label immunofluorescence analysis, the expression of keratin peptides was analyzed in cultured keratinocytes maintained in the basal or suprabasal cell phenotypes. These cell types were selected by growth in medium containing 0.05 mM Ca2+ (basal cell) or 1.4 mM Ca2+ (suprabasal cell). The cultured basal cells expressed K6 and K14, but less than 1% expressed K1 and K10. Within a few hours after being placed in 1.4 mM Ca2+, K1 expression was observed, and by 24 h, 10%-17% of the cells expressed K1. K10 expression appeared to lag behind K1 expression, with only 5%-10% of cells in 1.4 mM Ca2+ exhibiting K10 immunoreactivity. Double-labeling studies indicated that virtually all K10-positive cells also expressed K1, while only about one-half of the K1-positive cells expressed K10. The treatment of basal cells with retinoic acid at pharmacological concentrations prevented the expression of K1 and K10 when cells were challenged by 1.4 mM Ca2+. Similarly, the introduction of the v-rasH oncogene into basal cells by a defective retroviral vector prevented the expression of suprabasal keratins in 1.4 mM Ca2+ medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Diseases of epidermal keratins and their linker proteins   总被引:3,自引:0,他引:3  
Epidermal keratins, a diverse group of structural proteins, form intermediate filament networks responsible for the structural integrity of keratinocytes. The networks extend from the nucleus of the epidermal cells to the plasma membrane where the keratins attach to linker proteins which are part of desmosomal and hemidesmosomal attachment complexes. The expression of specific keratin genes is regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Progress in molecular characterization of the epidermal keratins and their linker proteins has formed the basis to identify mutations which are associated with distinct cutaneous manifestations in patients with genodermatoses. The precise phenotype of each disease apparently reflects the spatial level of expression of the mutated genes, as well as the types and positions of the mutations and their consequences at mRNA and protein levels. Identification of specific mutations in keratinization disorders has provided the basis for improved diagnosis and subclassification with prognostic implications and has formed the platform for prenatal testing and preimplantation genetic diagnosis. Finally, precise knowledge of the mutations is a prerequisite for development of gene therapy approaches to counteract, and potentially cure, these often devastating and currently intractable diseases.  相似文献   

3.
The alpha-keratins, the principal components of the tonafilaments, were extracted, characterized and compared in bovine hoof and snout epidermis. The alpha-fibrous proteins of these tissues are similar with respect to their molecular weights, amino acid composition and percentage of helical structure. However, distinct differences in the polypeptides comprising these proteins were observed. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these proteins consistently showed that the polypeptide chain in snout, designated as band B (mol.wt. 67,000), was completely absent from hoof preparations. This was confirmed with several alternative preparative procedures. The peptides produced by digestion of the intact keratins from hoof and snout with CNBr were distinctly different. Finally, digestion of keratins from hoof and snout with trypsin yielded products that differed in size and resistance to further digestion. Thus, in addition to the interspecies polypeptide heterogeneity documented in the literature, this report establishes the intraspecies heterogeneity of keratins and suggests that these differences are due to either the expression of different gene products or differences in post-translational modifications in these two tissues.  相似文献   

4.
E Fuchs  H Green 《Cell》1979,17(3):573-582
The keratins of human epidermis consist of several distinct proteins of different molecular weight that can be separated by gel electrophoresis in the presence of sodium dodecylsulfate. These proteins are very similar in structure, as determined by amino acid composition, polypeptide mapping and immunological reactivity. At least five such keratins are found in cultured human epidermal cells. We have examined the mode of synthesis of these keratins by isolating the poly(A)+ mRNA from the cultured cells and translating it in a reticulocyte system. All the keratins characteristic of the cultured cells were synthesized in vitro from the mRNA; they were identified by their molecular weight and by polypeptide mapping. No evidence was found for any precursor of substantially greater molecular weight. A study of the kinetics of synthesis showed that all the keratins were labeled within 2 min after the addition of 35S-methionine to a translation system preincubated with epidermal mRNA, and the relative intensities of labeling did not change upon further incubation. It was therefore improbable that one keratin could be the precursor of another. The mRNAs of the large keratins could be completely separated from those of the small keratins by gel electrophoresis under either native or denaturing conditions. Within the group of small mRNAs, each had a different mobility although resolution was incomplete. Upon translation, the mRNA fractions yielded different groups of keratins corresponding in molecular weight to their counterparts in the cells. Consequently, most if not all keratins of different size are translated from different messages. The approximate sizes of the mRNA molecules for different keratins were determined from their mobility under denaturing conditions. The size of the mRNA was not always proportional to the size of the encoded keratin, demonstrating the existence of noncoding segments of different length in the different mRNA molecules.  相似文献   

5.
6.
Electrophoretically homogeneous keratin A and keratin B were studied in the ultracentrifuge. Both preparations revealed two fractions: one which sedimented rapidly and another which sedimented slowly. This indicated that both preparations are heterogeneous with respect to particle size.  相似文献   

7.
The major structural proteins of epithelia, the keratins, and the keratin filament-associated protein, filaggrin, were analyzed in more than 50 samples of human embryonic and fetal skin by one-dimensional SDS PAGE and immunoblotting with monoclonal and polyclonal antibodies. Companion samples were examined by immunohistochemistry and electron microscopy. Based on structural characteristics of the epidermis, four periods of human epidermal development were identified. The first is the embryonic period (before 9 wk estimated gestational age), and the others are within the fetal period: stratification (9-14 wk), follicular keratinization (14-24 wk), and interfollicular keratinization (beginning at approximately 24 wk). Keratin proteins of both the acidic (AE1-reactive, type I) and the basic (AE3-reactive, type II) subfamilies were present throughout development. Keratin intermediate filaments were recognized in the tissue by electron microscopy and immunohistochemical staining. Keratins of 50 and 58 kD were present in the epidermis at all ages studied (8 wk to birth), and those of 56.5 and 67 kD were expressed at the time of stratification and increased in abundance as development proceeded. 40- and 52-kD keratins were present early in development but disappeared with keratinization. Immunohistochemical staining suggested the presence of keratins of 50 and 58 kD in basal cells, 56.5 and 67 kD in intermediate cells, and 40 and 52 kD in the periderm as well as in the basal cells between the time of stratification and birth. Filaggrin was first detected biochemically at approximately 15 wk and was localized immunohistochemically in the keratinizing cells that surround hair follicles. It was identified 8-10 wk later in the granular and cornified cell layers of keratinized interfollicular epidermis. These results demonstrate the following. An intimate relationship exists between expression of structural proteins and morphologic changes during development of the epidermis. The order of expression of individual keratins is consistent with the known expression of keratins in simple vs. stratified vs. keratinized epithelia. Expression of keratins typical of stratified epithelia (50 and 58 kD) precedes stratification, and expression of keratins typical of keratinization (56.5 and 67 kD) precedes keratinization, which suggests that their expression marks the tissue commitment to those processes. Because only keratins that have been demonstrated in various adult tissues are expressed during fetal development, we conclude that there are no "fetal" keratins per se.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have isolated poly (A)+ RNA, highly enriched in keratin mRNA from bovine muzzle epidermis, and injected it into epithelial cells of a different type, i.e., cultured kidney epithelial cells of the same (MDBK) or taxonomically distant (PtK2) species. Both recipient cell lines contain keratin polypeptides that are different from those present in epidermal cells. Using keratin subtype-specific antibodies in immunofluorescence and immunoelectron microscopy, we show that foreign keratin mRNAs when injected into a different type of epithelial cell can recruit polyribosomes and are translated together with the keratin mRNAs of the host cell. Foreign epidermal keratins are excluded from vimentin filaments and other structures but readily coassemble with the endogenous keratins and appear to be integrated into the meshwork of the preexisting kidney-type keratin filaments. Our observations indicate that different sets of keratin polypeptides from the same or different species can coassemble in the living cell into a common filament system. Thus we have developed a procedure that allows experimental alteration of the intermediate filament cytoskeleton within living epithelial cells.  相似文献   

9.
Donald T. Downing 《Proteins》1995,23(2):204-217
Mammalian epidermal keratin molecules adopt rod-shaped conformations that aggregate to form cytoplasmic intermediate filaments. To investigate these keratin conformations and the basis for their patterns of molecular association, graphical methods were developed to relate known amino acid sequences to probable spacial configurations. The results support the predominantly α-helical conformation of keratin chains, interrupted by short non-α-helical linkages. However, it was found that many of the linkages have amino acid sequences typical of β-strand conformations. Space-filling atomic models revealed that the β-strand sequences would permit the formation of 2-chain and 4-chain cylindrical β-helices, fully shielding the hydrophobic amino acid chains that alternate with hydrophilic residues in these sequences. Because of the locations of the β-helical regions in human and mouse stratum corneum keratin chains, only homodimers of the keratins could interact efficiently to form 2-chain and 4-chain β-helices. Tetramers having the directions and degrees of overlap of constituent dimers that have been identified by previous investigators are also predicted from the interactions of β-helical motifs. Heterotetramers formed from dissimilar homodimers could combine, through additional β-helical structures, to form higher oligomers having the dimensions seen in electron microscopic studies. Previous results from chemical crosslinking studies can be interpreted to support the concept of homodimers rather than heterodimers as the basis for keratin filament assembly. © 1995 Wiley-Liss, Inc.  相似文献   

10.
X-linked ichthyosis is a relatively common syndromic form of ichthyosis most often due to deletions in the gene encoding the microsomal enzyme, steroid sulfatase, located on the short area of the X chromosome. Syndromic features are mild or unapparent unless contiguous genes are affected. In normal epidermis, cholesterol sulfate is generated by cholesterol sulfotransferase (SULT2B1b), but desulfated in the outer epidermis, together forming a ‘cholesterol sulfate cycle’ that potently regulates epidermal differentiation, barrier function and desquamation. In XLI, cholesterol sulfate levels my exceed 10% of total lipid mass (≈ 1% of total weight). Multiple cellular and biochemical processes contribute to the pathogenesis of the barrier abnormality and scaling phenotype in XLI. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

11.
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins.  相似文献   

12.
Human epidermal keratinocytes express under various growth conditions a total of at least nine keratins that can be divided into two subfamilies. Subfamily A comprises 40-, 46-, 48-, 50-/50'-, and 56.5-kilodalton (kd) keratins which are relatively acidic (pI less than 5.5) and, with the exception of 46-kd keratin, are recognized by AE1 monoclonal antibody. Subfamily B comprises 52-, 56-, 58-, and 65-67-kd keratins which are relatively basic (pI greater than 6) and are recognized by AE3 monoclonal antibody. Within each keratin subfamily, there is a constant member (50-/50'- and 58-kd keratins of the subfamilies A and B, respectively) that is always expressed. The other seven keratins of both subfamilies are variable members whose expression depends upon the cellular differentiated state, which is in turn modulated by the growth environment. The 56.5-kd keratin (subfamily A) and the 65-67-kd keratins (subfamily B) are coordinately expressed during keratinization. In contrast, the 40-, 46-, and 48-kd keratins (subfamily A) and the 52- and 56-kd keratins (subfamily B) are characteristic of cultured epidermal cells forming nonkeratinized colonies. These results demonstrate that human epidermal keratins can be classified according to their reactivity with monoclonal antikeratin antibodies, isoelectric point, and mode of expression. The classification of keratins into various subgroups may have important implications for the mechanisms of epidermal differentiation, the evolution of keratin heterogeneity, and the use of keratin markers for tumor diagnosis.  相似文献   

13.
Summary In vitro assembly and morphological characteristics of purified 58 kDa, 52 kDa, 50 kDa, and 45 kDa polypeptides in the leaves and the cotyledons of the cabbage (Brassica pekinensis Rupt.) were investigated by electron microscopy and scanning tunneling microscopy. The three or four purified intermediate filament (IF) polypeptides can spontaneously assemble into intermediate filaments in vitro with a 23–24 nm axial repeat, which indicates that keratin IFs in higher plant cells have the same molecular arrangement as in animal cells. STM images suggest that the plant keratin filaments display a pronounced structural polymorphism, which can be composed of 3 nm, 4.5 nm, or 6 nm wide keratin protofilaments.Abbreviation IF intermediate filament - STM scanning tunneling microscopy - SDS sodium dodecyl sulfate - BCIP 5-bromo-4-chloro-3-indolyl phosphate-toluidine - NBC p-nitroblue tetrazolium chloride - PMSF phenylmethyl sulfonylfluoride - HOPG high oriented pyrolytic graphite  相似文献   

14.
15.
16.
17.
18.
Second-trimester maternal serum screening is a noninvasive means of identifying pregnant women at an increased risk for various conditions including a fetus with open spina bifida, fetal Down syndrome, trisomy 18, multiple gestation, and adverse pregnancy outcome. Combinations of several different markers are available for screening. These include alpha-fetoprotein, human chorionic gonadotropin, and unconjugated estriol. In this review, we discuss the benefits and limitations of the screening tests and the suggested protocols for the care of patients.  相似文献   

19.
Lessons from Amy     
S. Cameron 《CMAJ》1997,157(1):14
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号