首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The present studies were designed to examine the regulation of Na+/H+ exchange activity by epidermal growth factor (EGF) in an in vitro system. Na+/H+ exchange activity was determined in brush-border membranes isolated from rat jejunal enterocytes incubated with epidermal growth factor and a number of second messengers. EGF at physiological concentrations stimulated Na+/H+ exchange activity without affecting vesicle size. The stimulation of Na+/H+ activity was the result of increasing Vmax of Na+/H+ (6.0 +/- 0.4 compared with 3.3 +/- 0.27 nmol/mg protein/5 sec, P < 0.01). Km values of the Na+/H+ exchanger in brush-border membrane from cells stimulated with EGF and controls were similar (16.0 +/- 3.0 vs 13.0 +/- 3.0, respectively). Na+/H+ activity was inhibited by phorbol esters, calmodulin, and cyclic AMP. The effects of EGF, calmodulin, cyclic AMP, and phorbol esters were dependent on ATP, because depleting the cells from ATP masked the effects on Na+/H+ exchange activity. The results suggest that EGF stimulates Na+/H+ exchange activity in the enterocytes. This stimulation is most likely not via activation of the phosphatidylinositol pathway.  相似文献   

4.
5.
PC12 cells, which differentiate morphologically and biochemically into sympathetic neruonlike cells in response to nerve growth fact, also respond to epidermal growth factor. The response to epidermal growth factor is similar in certain respects to the response to nerve growth fact. Both peptides produce rapid increases in cellular adhesion and 2-deoxyglucose uptake and both induce ornithine decarboxylase. But nerve growth factor causes a decreased cell proliferation and a marked hypertrophy of the cells. In contrast, epidermal growth factor enhances cell proliferation and does not cause hypertrophy. Nerve growth factor induces the formation of neuritis; epidermal growth factor does not. When both factors are presented simultaneously, the cells form neurites. Furthermore, the biological response to epidermal growth fact, as exemplified by the induction of ornithine decarboxylase, is attenuated by prior treatment of the cells with nerve growth factor. PC12 cells have epidermal growth factor receptors. The binding of epidermal growth factor to these receptors is rapid and specific, and exhibits an equilibrium constant of 1.9 x 10(-9) M. Approximately 80,000 receptors are present per cell, and this number is independent of cell density. Treatment of the cells with nerve growth factor reduces the amount of epidermal growth factor binding by at least 80 percent. The decrease in receptor binding begins after approximately 12-18 h of nerve growth factor treatment and is complete within 3 d. Scratchard plots indicate that the number of binding sites decreases, not the affinity of the binding sites for epidermal growth factor.  相似文献   

6.
The present study examined responses of cultured rat glomerular mesangial cells to exogenous exposure of epoxyeicosatrienoic acids (EET's), products of cytochrome P450 epoxygenase. One day after administration of 8,9- or 14,15-EET, cultured rat mesangial cells demonstrated significant increases in [3H]thymidine incorporation (10(-7) M 14,15-EET: 120 +/- 7% of control; n = 6; P less than 0.025; 10(-6) M 14,15-EET: 145 +/- 10%; n = 20; P less than 0.0005; 10(-6) M 8,9-EET: 167 +/- 31%; n = 9; P less than 0.05), which was not affected by addition of the cyclooxygenase inhibitor indomethacin. In addition to stimulation of [3H]thymidine incorporation, the epoxides stimulated mesangial cell proliferation. 14,15-EET administration induced intracellular alkalinization of 0.2-0.3 pH units, which was prevented by extracellular Na+ removal and blunted by amiloride (0.5 mM). Following intracellular acidification with NH4Cl addition and removal, greater than 85% of 3 mM 22Na uptake into mesangial cells was inhibited by 1 mM amiloride, indicating Na+/H+ exchange. Under these conditions, 14,15-EET stimulated Na+/H+ exchange by 42% and 8,9-EET stimulated Na+/H+ exchange by 59%. Neither protein kinase C depletion nor addition of the protein kinase C inhibitor, staurosporine, affected this stimulation. In [3H]myo-inositol loaded mesangial cells, no significant stimulation of phosphoinositide hydrolysis was detected in response to administration of 14,15-EET. Twenty-four hours after addition of [14C]14,15-EET, greater than 90% was preferentially esterified to cellular lipids, with predominant incorporation into phosphatidylinositol, phosphatidylethanolamine, and diacylglycerol. Thus, these results demonstrate epoxyeicosatrienoic acids stimulate Na+/H+ exchange and mitogenesis in mesangial cells. These effects do not appear to be mediated via phospholipase C activation. In addition, 14,15-EET was selectively incorporated into cellular lipids known to mediate signal transduction. These observations extend the potential biologic roles of c-P450 arachidonate metabolites to include stimulation of cell proliferation and suggest a role for these compounds in vascular and renal injury.  相似文献   

7.
Rat pheochromocytoma PC12 cells exposed to nerve growth factor differentiate as sympathetic neurons and extend neurites on laminin and to a much lesser extent on fibronectin. Analysis of laminin fragments indicated that neurite outgrowth occurs mainly on fragment P1, corresponding to the center of the cross, and only poorly on fragment E8, a long arm structure that is active with other neuronal cells. Integrin antibodies prevented adhesion and neurite sprouting of these cells on laminin, fragment P1, and fibronectin. By affinity chromatography we isolated an integrin-type receptor for laminin consisting of two subunits with molecular massess of 180 and 135 kDa. The latter is recognized by an antiserum to integrin beta 1 subunit. The bound laminin receptor could be displaced by EDTA, but not by Arg-Gly-Asp or Tyr-Ile-Gly-Ser-Arg peptides. Affinity chromatography on laminin fragments showed that the 180/135 kDa receptor binds to P1. The expression of the 180-kDa alpha subunit of the laminin receptor at the cell surface was increased 10-fold after NGF treatment. The effect of NGF is specific since the amount of a 150-kDa fibronectin-binding integrin alpha subunit remained unchanged. Moreover, the increased expression of the 180/135 kDa receptor at the cell surface corresponded to a selective increase in cell adhesion to laminin and to fragment P1. The 180/135-kDa complex is thus an integrin-type receptor for laminin whose expression and binding specificity correlates with the capacity of NGF-induced PC12 cells to extend neurites on laminin.  相似文献   

8.
Nerve growth factor (NGF) is known to induce differentiation of pheochromocytoma into sympathetic neuron-like cells. Tetrahydrobiopterin (BPH4) and total biopterin (BP) levels in PC12h, a subclonal line of PC12, were transiently increased by NGF: the increase in BPH4 and BP reached the maximum (20-25 ng/mg protein = about 2-fold over the control level) at 24 h after the treatment was started. After 2-3 days, the BPH4 and BP levels decreased to the same level as in control cells. The NGF concentration which gave a half maximal BP increase by 24 h-treatment was around 1 ng/ml.  相似文献   

9.
J C Gordon  H C Rowland 《Life sciences》1990,46(20):1435-1442
In rat pheochromocytoma (PC12) cells, nerve growth factor (7S NGF) induced the expression of recognition sites that bind the specific 5-HT3 antagonist (S-) [3H]zacopride. Culturing PC12 cells for 8-12 days in the presence of 50 ng/ml NGF increased the density (Bmax) of (S-) [3H]zacopride binding sites in cell membranes (0-100,000 x g fraction) from 0 to 105 fmoles/mg protein. This binding exhibited high affinity for (S-) [3H]zacopride (Kd = 0.8 nM), was specific (greater than 95%), and was inhibited by 5-HT3 compounds with a rank of potency (quipazine greater than ICS 205-930 greater than GR38032F greater than BRL24924 approximately MDL 72222 greater than phenylbiguanide greater than or equal to serotonin greater than 2-methyl-serotonin greater than metoclopramide) which was distinct from neuroblastoma cells. Thus, NGF-differentiated PC12 cells possess a 5-HT3 receptor and should be useful to investigate its regulation and biochemical mechanism of action.  相似文献   

10.
Na+/H+ exchange in acid-loaded isolated hepatocytes was measured using the intracellular pH indicator biscarboxyethyl-carboxyfluorescein (BCECF) to follow intracellular pH (pHi). The rate of amiloride-sensitive Na(+)-dependent recovery from cytoplasmic-acid-loading was found to be increased in cells treated with epidermal growth factor (EGF), 8-(4-chlorophenylthio)adenosine 3',5'-monophosphate (ClPhScAMP) or phorbol 12-myristate 13-acetate (PMA). These three agents increased the rate of Na+/H+ exchange to similar extents and their effects were not additive. The stimulation was shown in all three cases to be due an alkaline shift of 0.1 in the set point pH of the Na+/H+ exchanger. Experiments measuring the uptake of 22Na+ into acid-loaded primary hepatocyte monolayer cultures confirmed these results. EGF, ClPhScAMP and PMA significantly increased the amiloride-inhibitable accumulation of 22Na+, thus providing further evidence that Na+/H+ exchange is stimulated by these effectors.  相似文献   

11.
Thrombin-stimulated endothelial cells produce platelet-activating factor (PAF) in a dose-dependent manner: the activation of a Ca2+-dependent lyso-PAF acetyltransferase is the rate-limiting step in this process. The present study shows that acetyltransferase activation and consequent PAF production induced by thrombin in human endothelial cells are markedly inhibited in Na+-free media or after addition of the amiloride analog 5-(N-ethyl-N-isopropyl)amiloride, suggesting that a Na+/H+ antiport system is present in endothelial cells and plays a prominent role in thrombin-induced PAF synthesis. Accordingly, thrombin elicits a sustained alkalinization in 6-carboxyfluorescein-loaded endothelial cells, that is abolished in either Na+-free or 5-(N-ethyl-N-isopropyl)amiloride-containing medium. Extracellular Ca2+ influx induced by thrombin (as measured by quin2 and 45Ca methods) is completely blocked in the same experimental conditions, and monensin, a Na+/H+ ionophore mimicking the effects of the antiporter activation, evokes a dose-dependent PAF synthesis and a marked Ca2+ influx, which are abolished in Ca2+-free medium. An amiloride-inhibitable Na+/H+ exchanger is present in the membrane of human endothelial cells, its apparent Km for extracellular Na+ is 25 mM, and its activity is greatly enhanced when the cytoplasm is acidified. These results suggest that Na+/H+ exchange activation by thrombin and the resulting intracellular alkalinization play a direct role in the induction of Ca2+ influx and PAF synthesis in human endothelial cells.  相似文献   

12.
Endothelin stimulates Na+/H+ exchange in vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The effect of endothelin (ET) on the intracellular pH (pHi) of vascular smooth muscle cells (VSMC), was investigated using a fluorescent pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). ET at concentrations of over 10(-9) M caused dose-dependent transient acidification followed by Na(+)-dependent and amiloride-sensitive alkalization of the cells due to stimulation of Na+/H+ exchange. The alkalization induced by ET was Ca2(+)-dependent and was inhibited by a calcium channel blocker, nicardipine. Pretreatment with H-7, an inhibitor of protein kinase C, also inhibited the ET-induced cell alkalization. These results indicate that ET stimulates Na+/H+ exchange, resulting in alkalization of VSMC and that this ET-induced cell-alkalization is probably linked to Ca2+ influx and activation of protein kinase C.  相似文献   

13.
Nerve growth factor (NGF) inhibits transepithelial HCO3- absorption in the rat medullary thick ascending limb (MTAL). To investigate the mechanism of this inhibition, MTALs were perfused in vitro in Na+-free solutions, and apical and basolateral membrane Na+/H+ exchange activities were determined from rates of pHi recovery after lumen or bath Na+ addition. NGF (0.7 nM in the bath) had no effect on apical Na+/H+ exchange activity, but inhibited basolateral Na+/H+ exchange activity by 50%. Inhibition of basolateral Na+/H+ exchange activity with ethylisopropyl amiloride (EIPA) secondarily reduces apical Na+/H+ exchange activity and HCO3- absorption in the MTAL (Good, D. W., George, T., and Watts, B. A., III (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 12525-12529). To determine whether a similar mechanism could explain inhibition of HCO3- absorption by NGF, apical Na+/H+ exchange activity was assessed in physiological solutions (146 mM Na+) by measurement of the initial rate of cell acidification after lumen EIPA addition. Under these conditions, in which basolateral Na+/H+ exchange activity is present, NGF inhibited apical Na+/H+ exchange activity. Inhibition of HCO3- absorption by NGF was eliminated in the presence of bath EIPA or in the absence of bath Na+. Also, NGF blocked inhibition of HCO3- absorption by bath EIPA. We conclude that NGF inhibits basolateral Na+/H+ exchange activity in the MTAL, an effect opposite from the stimulation of Na+/H+ exchange by growth factors in other systems. NGF inhibits transepithelial HCO3- absorption through inhibition of basolateral Na+/H+ exchange, most likely as the result of functional coupling in which primary inhibition of basolateral Na+/H+ exchange activity results secondarily in inhibition of apical Na+/H+ exchange activity. These findings establish a role for basolateral Na+/H+ exchange in the regulation of renal tubule HCO3- absorption.  相似文献   

14.
15.
16.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

17.
We used a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) to examine the regulation of the ubiquitous sodium-proton exchanger, Na+/H+ exchanger isoform 1 (NHE-1), by a prototypical G protein-coupled receptor, the bradykinin B2 receptor. Bradykinin rapidly activates NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry of quiescent cells and by 2'-7'-bis[2-carboxymethyl]-5(6)-carboxyfluorescein fluorescence measuring the accelerated rate of pH(i) recovery from an imposed acid load. The activation of NHE-1 is blocked by inhibitors of the bradykinin B2 receptor, phospholipase C, Ca2+/calmodulin (CaM), and Janus kinase 2 (Jak2), but not by pertussis toxin or by inhibitors of protein kinase C and phosphatidylinositol 3'-kinase. Immunoprecipitation studies showed that bradykinin stimulates the assembly of a signal transduction complex that includes CaM, Jak2, and NHE-1. CaM appears to be a direct substrate for phosphorylation by Jak2 as measured by an in vitro kinase assay. We propose that Jak2 is a new indirect regulator of NHE-1 activity, which modulates the activity of NHE-1 by increasing the tyrosine phosphorylation of CaM and most likely by increasing the binding of CaM to NHE-1.  相似文献   

18.
Addition of serum to quiescent mammalian cells in culture initiates a series of events which culminates in DNA replication and cell division. One of the earliest events in this sequence of events is activation of Na+/H+ exchange, which can result in an increase in intracellular pH (pHin). The regulation of this change in activity is not known. Since treatment of 3T3 cells with activators of protein kinase C (kinase C) can result in an increased pHin, it has been hypothesized that serum stimulation of kinase C is responsible for activation of Na+/H+ exchange. Recently, sphingolipids have been discovered to inhibit kinase C both in vitro and in vivo. Therefore, we undertook the present study to ask whether or not inhibition of kinase C using sphingolipids prevents mitogen-induced alkalinization in 3T3 cells. Our results indicate that activators of kinase C stimulate Na+/H+ exchange in normal human fibroblasts (BoGi), but not in mouse embryo (3T3) cells. Addition of serum to BoGi cells, on top of saturating doses of phorbol 12-myristate 13-acetate (PMA), results in a further cytoplasmic alkalinization. Furthermore, sphingosine prevents the PMA-induced increase in pHin in BoGi cells, and phosphorylation of an 80 kDa protein in 3T3 cells, but not the serum-induced alkalinization in either BoGi or 3T3 cells. These data indicate that activation of kinase C does not participate in the physiological activation of Na+/H+ exchange in human fibroblasts or mouse embryo cells by serum.  相似文献   

19.
The specific binding of various concentrations of 125I-labeled nerve growth factor (NGF) to PC12 cells at 37 degrees C reached maxima after 90 min and then declined to 25% of maximal binding after 10 h. Decreased binding was accompanied by degradation of 125I-NGF and the appearance of acid-soluble biologically inactive 125I (mainly 125I-monoiodotyrosine) in the medium as well as a decrease in the number of surface NGF receptors. The time-dependent decrease in binding and the degradation of 125I-NGF were inhibited by low temperature and the lysosomotropic agent chloroquine while degradation was inhibited by metabolic energy inhibitors in the absence of glucose. Chloroquine also produced an increase in the accumulation of 125I-NGF which was not readily removed from the cells. These data suggest that 125I-NGF bound to PC12 cells is efficiently internalized by receptor-mediated endocytosis and degraded by the lysosomes. It appears from other data that this process does not produce the intracellular signals regulating neurite outgrowth.  相似文献   

20.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号