首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergillus nidulans early endosomes display characteristic long-distance bidirectional motility. Simultaneous dual-channel acquisition showed that the two Rab5 paralogues RabB and RabA colocalize in these early endosomes and also in larger, immotile mature endosomes. However, RabB-GTP is the sole recruiter to endosomes of Vps34 PI3K (phosphatidylinositol-3-kinase) and the phosphatidylinositol-3-phosphate [PI(3)P] effector AnVps19 and rabBΔ, leading to thermosensitivity prevents multivesicular body sorting of endocytic cargo. Thus, RabB is the sole mediator of degradative endosomal identity. Importantly, rabBΔ, unlike rabAΔ, prevents early endosome movement. As affinity experiments and pulldowns showed that RabB-GTP recruits AnVps45, RabB coordinates PI(3)P-dependent endosome-to-vacuole traffic with incoming traffic from the Golgi and with long-distance endosomal motility. However, the finding that Anvps45Δ, unlike rabBΔ, severely impairs growth indicates that AnVps45 plays RabB-independent functions. Affinity chromatography showed that the CORVET complex is a RabB and, to a lesser extent, a RabA effector, in agreement with GST pulldown assays of AnVps8. rabBΔ leads to smaller vacuoles, suggesting that it impairs homotypic vacuolar fusion, which would agree with the sequential maturation of endosomal CORVET into HOPS proposed for Saccharomyces cerevisiae. rabBΔ and rabAΔ mutations are synthetically lethal, demonstrating that Rab5-mediated establishment of endosomal identity is essential for A. nidulans.  相似文献   

2.
Proper functioning of the precisely controlled endolysosomal system is essential for maintaining the homeostasis of the entire cell. Tethering factors play pivotal roles in mediating the fusion of different transport vesicles, such as endosomes or autophagosomes with each other or with lysosomes. In this work, we uncover several new interactions between the endolysosomal tethering factors Rabenosyn-5 (Rbsn) and the HOPS and CORVET complexes. We find that Rbsn binds to the HOPS/CORVET complexes mainly via their shared subunit Vps18 and we mapped this interaction to the 773–854 region of Vps18. Based on genetic rescue experiments, the binding between Rbsn and Vps18 is required for endosomal transport and is dispensable for autophagy. Moreover, Vps18 seems to be important for β1 integrin recycling by binding to Rbsn and its known partner Vps45.  相似文献   

3.
In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome—endocytosis and autophagy—converge through the Vps21 and Ypt7 GTPase modules.  相似文献   

4.
Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions.  相似文献   

5.
Vps8 is a subunit of the CORVET tethering complex, which is involved in early-to-late endosome fusion. Here, we examine the role of Vps8 in membrane fusion at late endosomes in Saccharomyces cerevisiae. We demonstrate that Vps8 associates with membranes and that this association is independent of the class C/HOPS core complex and, contrary to a previous report, also independent of the Rab GTPase Vps21. Our data indicate that Vps8 makes multiple contacts with membranes. One of these membrane binding regions could be mapped to the N-terminal part of the protein. By two-hybrid analysis, we obtained evidence for a physical interaction between Vps8 and the Rab5 homologue Vps21. In addition, the interaction with the HOPS core complex was confirmed by immunoprecipitation experiments. By deletion analysis, the Vps21 and HOPS binding sites were mapped in Vps8. Deletions that abrogated HOPS core complex binding had a strong effect on the turnover of the endocytic cargo protein Ste6 and on vacuolar sorting of carboxypeptidase Y. In contrast, deletions that abolished Vps21 binding showed only a modest effect. This suggests that the Vps21 interaction is not essential for endosomal trafficking but may be important for some other aspect of Vps8 function.The compartments of the exocytic/endocytic membrane system are dynamic structures that continuously exchange materials by budding and fusion of transport vesicles. Despite this continuous exchange, the compartments maintain their specific identities. A basic machinery consisting of tethering factors, Rab GTPases, SNARE proteins, and Sec1/Munc18 (SM) proteins accomplishes membrane targeting and fusion. For each individual membrane fusion event, a characteristic set of proteins is used.We are interested in a particular membrane fusion step, the fusion of early endosome-derived vesicles with late endosomes. Screening for vps (vacuolar protein sorting) mutants in Saccharomyces cerevisiae identified factors involved in this fusion step (3). Mutants defective in the early-to-late endosome trafficking step belong to the class D group of vps mutants, whose hallmark is an enlarged vacuole (21). Among the class D functions, representatives of the main groups of targeting and fusion factors can be found. The Q-SNARE protein Pep12, for instance, a member of the syntaxin family, serves as a marker for late endosomal membranes (2). Together with the Q-SNAREs Vti1 and Syn8 or Tlg1, it forms two alternative t-SNARE complexes on late endosomal membranes (17). These t-SNAREs combine with the v-SNARES Snc1/Snc2 or Ykt6 to form functional trans-SNARE complexes. Pep12 functionally interacts with another class D protein, the SM protein Vps45 (4). Another component of the basic fusion machinery at late endosomes is the class D protein Vps21, a member of the Rab GTPase family and the yeast homologue of mammalian Rab5 (8, 12, 30). Rab proteins are key regulators of membrane fusion (9). They are involved in the recruitment of tethering and docking factors, and by their interplay with Rab effectors they contribute to the establishment of specific membrane domains. Another class D protein connected to Rab function is Vps9, a guanidine nucleotide exchange factor (GEF) for Vps21 (11).Additional class D proteins are involved in vesicle tethering at late endosomes. Basically, there are two kinds of tethers, proteins containing extensive coiled-coil domains and large multisubunit complexes (33). The prototype of the coiled-coil tethers is p115, with its yeast homologue Uso1, involved in tethering of vesicles to Golgi apparatus membranes (25). Another member of this class is EEA1, which is involved in tethering of vesicles to endosomes. The yeast class D protein Vps19/Pep7/Vac1 could be functionally similar to EEA1 (16). Two further class D proteins, Vps3 and Vps8, are part of the multisubunit (class C core vacuole/endosome tethering) CORVET tethering complex (20, 32). This complex shares core components with the HOPS (homotypic fusion and vacuole protein sorting) tethering complex involved in homotypic vacuolar fusion (28). This core complex, the class C Vps complex, consists of Vps11/Pep5, Vps16, Vps18/Pep3, and the SM protein Vps33 (26). Instead of Vps3 and Vps8, HOPS contains two additional subunits, Vps39/Vam6 and Vps41 (35), which appear to be functionally equivalent to Vps3 and Vps8 (20). In addition to bridging donor and acceptor membranes, tethers appear to be involved in coordinating Rab and SNARE functions. This was suggested by the finding that the equivalent CORVET/HOPS subunits Vps3 and Vps39/Vam6 both display GEF activity toward their respective Rab proteins, Vps21 and Ypt7 (20, 35). In addition, whole tethering complexes act as Rab effectors by binding to activated Rab-GTP and interact with the corresponding SNARE complexes (6, 20, 31).How exactly the tethers coordinate Rab and SNARE functions during membrane fusion is at present unclear. Here, we examine the function of the CORVET subunit Vps8 (5, 13) in membrane fusion at late endosomes in yeast. We demonstrate that Vps8 directly associates with membranes. Contrary to a previous report (13), we show that this membrane association is not dependent on Vps21. We further investigate the functional relationship between Vps8 and Vps21. We found that Vps21 physically interacts with Vps8 but that this interaction does not appear to be absolutely required for endosomal trafficking. Finally, we speculate that Vps8 could be part of a higher-order structure.  相似文献   

6.
The retromer complex, composed of sorting nexin subunits and a Vps26/Vps29/Vps35 trimer, mediates sorting of retrograde cargo from the endosome to the trans-Golgi network. The retromer trimer subcomplex is an effector of Rab7 (Ypt7 in yeast). Whereas endosome targeting of human retromer has been shown to require Rab7-GTP, targeting of yeast retromer to the endosome is independent of Ypt7-GTP and requires the Vps5 and Vps17 retromer sorting nexin subunits. An evolutionarily conserved amino acid segment within Vps35 is required for Ypt7/Rab7 recognition in vivo by both yeast and human retromer, establishing that Rab recognition is a conserved feature of this subunit. Recognition of Ypt7 by retromer is required for its function in retrograde sorting, and in yeast cells lacking the guanine nucleotide exchange factor for Ypt7, retrograde cargo accumulates in endosomes that are decorated with retromer, revealing an additional role for Rab recognition at the cargo export stage of the retromer functional cycle. In addition, yeast retromer trimer antagonizes Ypt7-regulated organelle tethering and fusion of endosomes/vacuoles via recognition of Ypt7. Thus retromer has dual roles in retrograde cargo export and in controlling the fusion dynamics of the late endovacuolar system.  相似文献   

7.
Transport along the endolysosomal system requires multiple fusion events at early and late endosomes. Deletion of several endosomal fusion factors, including the Vac1 tether and the Class C core vacuole/endosome tethering (CORVET) complex-specific subunits Vps3 and Vps8, results in a class D vps phenotype. As these mutants have an apparently similar defect in endosomal transport, we asked whether CORVET and Vac1 could still act in distinct tethering reactions. Our data reveal that CORVET mutants can be rescued by Vac1 overexpression in the endocytic pathway but not in CPY or Cps1 sorting to the vacuole. Moreover, when we compared the ultrastructure, CORVET mutants were most similar to deletions of the Rab Vps21 and its guanine nucleotide exchange factor Vps9 and different from vac1 deletion, indicating separate functions. Likewise, CORVET still localized to endosomes even in the absence of Vac1, whereas Vac1 localization became diffuse in CORVET mutants. Importantly, CORVET localization requires the Rab5 homologs Vps21 and Ypt52, whereas Vac1 localization is strictly Vps21-dependent. In this context, we also uncover that Muk1 can compensate for loss of Vps9 in CORVET localization, indicating that two Rab5 guanine nucleotide exchange factors operate in the endocytic pathway. Overall, our study reveals a unique role of CORVET in the sorting of biosynthetic cargo to the vacuole/lysosome.  相似文献   

8.
Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.  相似文献   

9.
The small GTPase Rab14 localizes to early endosomes and the trans-Golgi network, but its cellular functions on endosomes and its functional relationship with other endosomal Rab proteins are poorly understood. Here, we report that Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. Rab14 colocalizes well with Rab4 on peripheral endosomes. Depletion of Rab14, but not Rab4, causes dissociation of RUFY1 from endosomal membranes. Coexpression of RUFY1 with either Rab14 or Rab4 induces clustering and enlargement of endosomes, whereas a RUFY1 mutant lacking the Rab4-binding region does not induce a significant morphological change in the endosomal structures even when coexpressed with Rab14 or Rab4. These findings suggest that Rab14 and Rab4 act sequentially, together with RUFY1; Rab14 is required for recruitment of RUFY1 onto endosomal membranes, and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion. Depletion of Rab14 or RUFY1, as well as Rab4, inhibits efficient recycling of endocytosed transferrin, suggesting that Rab14 and Rab4 regulate endosomal functions through cooperative interactions with their dual effector, RUFY1.  相似文献   

10.
《Autophagy》2013,9(7):896-910
Atg18p and Atg21p are two highly homologous yeast autophagy proteins. Atg18p functions in both autophagy and the selective Cvt-pathway, while the function of Atg21p is restricted to the Cvt-pathway. The yeast genome encodes with Ygr223cp (Hsv2p) a third member of this protein family. So far no function has been assigned to Ygr223cp. By colocalization with the endosomal marker Snf7-RFP and an RFP-tagged FYVE domain, we here identify the localization of a pool of Atg18p, Atg21p and Ygr223cp at endosomes. Endosomal recruitment of all three proteins depends on PtdIns3P generated by the Vps34-complex II containing Vps38p, but not on the function of the Vps34-complex I. Since only the Vps34-complex I is essential for autophagy, we expect that at endosomes Atg18p, Atg21p and Ygr223cp have a function distinct from autophagy. Some Vps Class D mutants involved in Golgi-to-endosome transport are required for the endosomal recruitment of GFP-Atg18p, -Atg21p and –Ygr223cp. These include the Qa-SNARE Pep12p, its SM protein Vps45p, the Rab GTPase Vps21p and the Rab effector Vac1p. Deletion of ATG18, ATG21 and YGR223c, alone or simultaneously has no obvious function on the MVB-pathway and CPY-sorting. However, overexpression of ATG21 leads to CPY secretion. We further show, to our knowledge for the first time that Ygr223cp affects an autophagic process, namely micronucleophagy.  相似文献   

11.
Membrane tethering, the process of mediating the first contact between membranes destined for fusion, requires specialized multisubunit protein complexes and Rab GTPases. In the yeast endolysosomal system, the hexameric HOPS tethering complex cooperates with the Rab7 homolog Ypt7 to promote homotypic fusion at the vacuole, whereas the recently identified homologous CORVET complex acts at the level of late endosomes. Here, we have further functionally characterized the CORVET-specific subunit Vps8 and its relationship to the remaining subunits using an in vivo approach that allows the monitoring of late endosome biogenesis. In particular, our results indicate that Vps8 interacts and cooperates with the activated Rab5 homolog Vps21 to induce the clustering of late endosomal membranes, indicating that Vps8 is the effector subunit of the CORVET complex. This clustering, however, requires Vps3, Vps16, and Vps33 but not the remaining CORVET subunits. These data thus suggest that the CORVET complex is built of subunits with distinct activities and potentially, their sequential assembly could regulate tethering and successive fusion at the late endosomes.  相似文献   

12.
ESCRT-III heteropolymers mediate membrane protein cargo sorting into multivesicular endosomes for subsequent vacuolar degradation. We studied the localization of largely uncharacterized Aspergillus nidulans ESCRT-III using its key structural component Vps32 and the ‘associated’ component DidBDid2. Vps32-GFP localizes to motile early endosomes as reported, but predominates in aggregates often associated with vacuoles due to inability to dissociate from endosomes. DidBDid2 regulating Vps4 (the ATPase disassembling ESCRT-III) is not essential. Consistent with this accessory role, didBΔ is unable to block the MVB sorting of the glutamate transporter AgtA, but increases its steady-state level and mislocalizes a fraction of the permease to the plasma membrane under conditions promoting its vacuolar targeting. didBΔ exacerbates the dominant-negative growth defect resulting from Vps32-GFP over-expression. A proportion of DidB-GFP is detectable in early endosomes colocalizing with RabARab5 and accumulating in nudA1 tips, suggesting that ESCRT-III assembles on endosomes from the early steps of the endocytic pathway.  相似文献   

13.
The effectors of the Rab7 small GTPase play multiple roles in Rab7-dependent endosome-lysosome and autophagy-lysosome pathways. However, it is largely unknown how distinct Rab7 effectors coordinate to maintain the homeostasis of late endosomes and lysosomes to ensure appropriate endolysosomal and autolysosomal degradation. Here we report that WDR91, a Rab7 effector required for early-to-late endosome conversion, is essential for lysosome function and homeostasis. Mice lacking Wdr91 specifically in the central nervous system exhibited behavioral defects and marked neuronal loss in the cerebral and cerebellar cortices. At the cellular level, WDR91 deficiency causes PtdIns3P-independent enlargement and dysfunction of lysosomes, leading to accumulation of autophagic cargoes in mouse neurons. WDR91 competes with the VPS41 subunit of the HOPS complex, another Rab7 effector, for binding to Rab7, thereby facilitating Rab7-dependent lysosome fusion in a controlled manner. WDR91 thus maintains an appropriate level of lysosome fusion to guard the normal function and survival of neurons.  相似文献   

14.
VPS9 domains can act as guanosine nucleotide exchange factors (GEFs) against small G proteins of the Rab5 family. Saccharomyces cerevisiae vps9Δ mutants have trafficking defects considerably less severe than multiple deletions of the three cognate Rab5 paralogs (Vps21, Ypt52, and Ypt53). Here, we show that Muk1, which also contains a VPS9 domain, acts as a second GEF against Vps21, Ypt52, and Ypt53. Muk1 is partially redundant with Vps9 in vivo, with vps9Δ muk1Δ double mutant cells displaying hypersensitivity to temperature and ionic stress, as well as profound impairments in endocytic and Golgi endosome trafficking, including defects in sorting through the multivesicular body. Cells lacking both Vps9 and Muk1 closely phenocopy double and triple knock-out strains lacking Rab5 paralogs. Microscopy and overexpression experiments demonstrate that Vps9 and Muk1 have distinct localization determinants. These experiments establish Muk1 as the second Rab5 GEF in budding yeast.  相似文献   

15.
Endocytosis regulates multiple cellular processes, including the protein composition of the plasma membrane, intercellular signaling, and cell polarity. We have identified the highly conserved protein Rush hour (Rush) and show that it participates in the regulation of endocytosis. Rush localizes to endosomes via direct binding of its FYVE (Fab1p, YOTB, Vac1p, EEA1) domain to phosphatidylinositol 3-phosphate. Rush also directly binds to Rab GDP dissociation inhibitor (Gdi), which is involved in the activation of Rab proteins. Homozygous rush mutant flies are viable but show genetic interactions with mutations in Gdi, Rab5, hrs, and carnation, the fly homologue of Vps33. Overexpression of Rush disrupts progression of endocytosed cargo and increases late endosome size. Lysosomal marker staining is decreased in Rush-overexpressing cells, pointing to a defect in the transition between late endosomes and lysosomes. Rush also causes formation of endosome clusters, possibly by affecting fusion of endosomes via an interaction with the class C Vps/homotypic fusion and vacuole protein-sorting (HOPS) complex. These results indicate that Rush controls trafficking from early to late endosomes and from late endosomes to lysosomes by modulating the activity of Rab proteins.  相似文献   

16.
The small GTPase Rab5 is a key regulator of clathrin-mediated endocytosis. On early endosomes, within a spatially restricted domain enriched in phosphatydilinositol-3-phosphate [PI(3)P], Rab5 coordinates a complex network of effectors that functionally cooperate in membrane tethering, fusion, and organelle motility. Here we discovered a novel PI(3)P-binding Rab5 effector, Rabankyrin-5, which localises to early endosomes and stimulates their fusion activity. In addition to early endosomes, however, Rabankyrin-5 localises to large vacuolar structures that correspond to macropinosomes in epithelial cells and fibroblasts. Overexpression of Rabankyrin-5 increases the number of macropinosomes and stimulates fluid-phase uptake, whereas its downregulation inhibits these processes. In polarised epithelial cells, this function is primarily restricted to the apical membrane. Rabankyrin-5 localises to large pinocytic structures underneath the apical surface of kidney proximal tubule cells, and its overexpression in polarised Madin-Darby canine kidney cells stimulates apical but not basolateral, non-clathrin-mediated pinocytosis. In demonstrating a regulatory role in endosome fusion and (macro)pinocytosis, our studies suggest that Rab5 regulates and coordinates different endocytic mechanisms through its effector Rabankyrin-5. Furthermore, its active role in apical pinocytosis in epithelial cells suggests an important function of Rabankyrin-5 in the physiology of polarised cells.  相似文献   

17.
Endosomal biogenesis depends on multiple fusion and fission events. For fusion, the heterohexameric CORVET complex as an effector of the endosomal Rab5/Vps21 GTPase has a central function in the initial tethering event. Here, we show that the CORVET-specific Vps3 and Vps8 subunits, which interact with Rab5/Vps21, require their N-terminal domains for localization and function. Surprisingly, CORVET may lack either one of the two N-terminal domains, but not both, to promote protein sorting via the endosome. The dually truncated complex mislocalizes to the cytosol and is impaired in endocytic protein sorting, but not in assembly. Furthermore, the endosomal localization can be rescued by overexpression of Vps21 or one of the truncated CORVET subunits, even though CORVET assembly is not impaired by loss of the N-terminal domains or in strains lacking all endosomal Rab5s and Ypt7. We thus conclude that CORVET requires only its C-terminal domains for assembly and has beyond its putative β-propeller domains additional binding sites for endosomes, which could be important to bind Vps21 and other endosome-specific factors for efficient endosome tethering.  相似文献   

18.
The small GTPase Rab5 controls the fusogenic properties of early endosomes through GTP-dependent recruitment and activation of effector proteins. Expression of a GTPase-defective mutant, Rab5(Q79L), is known to cause formation of enlarged early endosomes. The ability of Rab5-GTP to recruit multiple effectors raises the question whether the Rab5(Q79L)-induced giant endosomes simply represent enlarged early endosomes or whether they have a more complex phenotype. In this report, we have addressed this issue by generating a HEp2 cell line with inducible expression of Rab5(Q79L) and performing ultrastructural analysis of Rab5(Q79L)-induced endosomes. We find that Rab5(Q79L) not only induces formation of enlarged early endosomes but also causes enlargement of later endocytic profiles. Most strikingly, Rab5(Q79L) causes formation of enlarged multivesicular endosomes with a large number of intraluminal vesicles, and endosomes that contain both early and late endocytic markers are frequently observed. In addition, we observe defects in the sorting of the EGF receptor and the transferrin receptor through this compartment.  相似文献   

19.
Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.  相似文献   

20.
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号