首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of the genes regulating neural progenitor cell (NPC) functions is of great importance to developmental neuroscience and neural repair. Previously, we combined genetic subtraction and microarray analysis to identify genes enriched in neural progenitor cultures. Here, we apply a strategy to further stratify the neural progenitor genes. In situ hybridization demonstrates expression in the central nervous system germinal zones of 54 clones so identified, making them highly relevant for study in brain and neural progenitor development. Using microarray analysis we find 73 genes enriched in three neural stem cell (NSC)-containing populations generated under different conditions. We use the custom microarray to identify 38 "stemness" genes, with enriched expression in the three NSC conditions and present in both embryonic stem cells and hematopoietic stem cells. However, comparison of expression profiles from these stem cell populations indicates that while there is shared gene expression, the amount of genetic overlap is no more than what would be expected by chance, indicating that different stem cells have largely different gene expression patterns. Taken together, these studies identify many genes not previously associated with neural progenitor cell biology and also provide a rational scheme for stratification of microarray data for functional analysis.  相似文献   

2.
3.
Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.  相似文献   

4.
Human embryonic stem cells (hESCs) are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs), which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF) into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.  相似文献   

5.
6.
7.
8.
9.
Embryonic stem cell studies have generated great interest, due to their ability to form a wide variety of matured cells. However, there remains a poor understanding of mechanisms regulating the cell state of embryonic stem cells (ESCs) and of the genes they express during early differentiation. Gene expression analysis may be a valuable tool to elucidate either the molecular pathways involved in self-renewal and pluripotency, or early differentiation and to identify potential molecular therapy targets. The aim of this study was to characterize at the molecular level the undifferentiated mouse ESC state and the early development towards embryoid bodies. To attempt this issue, we performed CodeLink Mouse Uniset I 20K bioarrays in a well-characterized mouse ESC line, MES3, 3- and 7 day-old embryoid bodies and we compared our findings with those in adult tissue cells. Gene expression results were subsequently validated in a commercial stem cell line, CGR8 (ATCC). Significance Analysis of Microarrays (SAM) was used to identify statistically significant changes in microarray data. We identified 3664 genes expressed at significantly greater levels in MES3 stem cells than in adult tissue cells, which included 611 with 3-fold higher gene expression levels versus the adult cells. We also investigated the gene expression profile during early embryoid body formation, identifying 2040 and 2243 genes that were up-regulated in 3- and 7- day-old embryoid bodies, respectively. Our gene expression results in MES3 cells were partially confirmed in CGR8 cells, showing numerous genes that are expressed in both mouse stem cells. In conclusion, our results suggest that commonly expressed genes may be strong candidates for involvement in the maintenance of a pluripotent and undifferentiated phenotype and in early development.  相似文献   

10.
Gene trapping is used to introduce insertional mutations into genes of mouse embryonic stem cells (ESCs). It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA tag for rapid identification of the disrupted gene. Gene traps have been employed worldwide to assemble libraries of mouse ESC lines harboring mutations in single genes, which can be used to make mutant mice. However, most of the employed gene trap vectors require gene expression for reporting a gene trap event and therefore genes that are poorly expressed may be under-represented in the existing libraries. To address this problem, we have developed a novel class of gene trap vectors that can induce gene expression at insertion sites, thereby bypassing the problem of intrinsic poor expression. We show here that the insertion of the osteopontin enhancer into several conventional gene trap vectors significantly increases the gene trapping efficiency in high-throughput screens and facilitates the recovery of poorly expressed genes.  相似文献   

11.
12.
13.
14.
Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the "niche," which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach. Among the genes identified, we focused on the junctional adhesion molecule 4 (JAM4), an immunoglobulin type cell adhesion molecule. JAM4 protein was actually localized to the plasma membrane in male germ cells. JAM4 expression was downregulated as cells differentiated in both germ cell and hematopoietic cell lineages. To analyze function in vivo, we generated JAM4-deficient mice. Histological analysis of testes from homozygous nulls did not show obvious abnormalities, nor did liver and kidney tissues, both of which strongly express JAM4. The numbers of hematopoietic stem cells in bone marrow were indistinguishable between wild-type and mutant mice, as was male germ cell development. These results suggest that JAM4 is expressed in stem cells and progenitor cells but that other cell adhesion molecules may substitute for JAM4 function in JAM4-deficient mice both in male germ cell and hematopoietic lineages.  相似文献   

15.
Although embryonic stem cells (ESCs) have enormous potentials due to their pluripotency, their therapeutic use is limited by ethical, biological and safety issues. Compared to ESCs, induced pluripotent stem cells (iPSCs) can be obtained from mouse or human fibroblasts by reprogramming. Numerous studies have established many protocols for differentiation of human iPSCs (hiPSCs) into neural lineages. However, the low differentiation efficiency of such protocols motivates researchers to design new protocols for high yield differentiation. Herein, we compared neural differentiation potential of three induction media for conversion of hiPSCs into neural lineages. In this study, hiPSCs-derived embryoid bodies were plated on laminin coated dishes and were treated with three induction media including (1) bFGF, EGF (2) RA and (3) forskolin, IBMX. Immunofluorescence staining and quantitative real-time PCR (qPCR) analysis were used to detect the expression of neural genes and proteins. qPCR analysis showed that the expression of neural genes in differentiated hiPSCs in forskolin, IBMX supplemented media was significantly higher than undifferentiated cells and those in induction media containing bFGF, EGF or RA. In conclusion, our results indicated a successful establishment protocol with high efficiency for differentiation of hiPSCs into neural lineages.  相似文献   

16.
The identity of embryonic stem cells (ESCs) is controlled by a set of pluripotency genes, including Oct4, Sox2, Nanog, and Fgf4. How their expression is repressed during differentiation and reactivated during reprogramming is largely unknown. Here, using mouse ESCs as well as F9 and P19 cells (mouse embryonal carcinoma cell lines, P19 being considered further differentiated than F9 cells) as models, we found that HDAC inhibitors elevated Fgf4 expression in P19 cells, but reduced it in F9 cells. We also observed that HDAC inhibitors enhanced the expression of Fgf4 and a subset of pluripotency genes in differentiated ESCs, but reduced their expression in undifferentiated and less differentiated ESCs. Mechanistically, we observed more HDAC1 recruitment and a weaker association of histone 4 lysine 5 acetylation at the Fgf4 enhancer in P19 cells compared to F9 cells. Additionally, we demonstrated the interaction between Sox2 and HDAC1 both in vitro and in vivo, implicating a possible role for Sox2 in the recruitment of HDAC1 to the Fgf4 enhancer. We also found that Nanog bound to the Fgf4 enhancer, and this binding was stronger in F9 cells, indicating the involvement of Nanog in the regulation of Fgf4 expression in undifferentiated and less differentiated pluripotent stem cells. This study uncovers an important role of HDAC1 and histone modifications in the repression of Fgf4 and perhaps other pluripotency genes during ESC differentiation. Our results also suggest that HDAC inhibitors may promote reprogramming partially through activating pluripotency genes at some intermediate stages.  相似文献   

17.
18.
Stem cells, such as embryonic stem cells, hematopoietic stem cells, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells, are undifferentiated cells that are endowed with a high potential for proliferation and the capacity for self-renewal with retention of pluri/multipotency to differentiate into their progenies. Recently, studies regarding the biological functions of glycolipids and cell surface microdomains (caveolae, lipid rafts, or glycolipid-enriched microdomains) in stem cells are emerging. In this review, we introduce the expression patterns of glycolipids and the functional roles of cell surface microdomains in stem cells.  相似文献   

19.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号