首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative to species such as rainbow trout, freshwater turtle shows a high tolerance to challenges involving acidosis and increases in extracellular K+. Therefore, the effects of acidosis or high K+ on twitch force and oxygen consumption were examined in ventricular ring preparations from these two species. The oxygen consumption associated with force development was estimated by net oxygen consumption (oxygen consumption during twitch force development minus that during rest). For turtle, elevation of CO2 from 2% (pH 7.7) to 12% (pH 6.9) in the gas equilibrating the muscle bath decreased twitch force by 20% without any effects on oxygen consumption. Decreasing pH from 7.7 to 6.9 with 22 mM lactic acid had similar effects. For trout, CO2-induced acidosis decreased twitch force by approximately 60%. Furthermore, force development became energetically less efficient as it fell disproportionately more than net oxygen consumption. This was not observed for lactic acidosis. For trout but not for turtle, acidosis resulted in an increase in oxygen consumption during rest. An increase in extracellular K+ from 2.5 mM to 10 mM depressed force and oxygen consumption proportionately for both species. Adrenaline (10 microM) increased twitch force for both species and oxygen consumption for trout; it attenuated the effects of high extracellular K+. Neither adrenaline nor high K+ influenced the ratio of force to net oxygen consumption. As opposed to high extracellular K+, acidosis appears to increase the energetic cost of contractility, particularly for the trout heart.  相似文献   

2.
M T Weis  K U Malik 《Prostaglandins》1989,37(6):707-723
Our previous study indicated that, in the isolated rabbit heart, perfusion with Ca2+ free Krebs Henseleit buffer (KHB) results in increased conversion of exogenous arachidonic acid to PGE2 and 6-keto-PGF1 alpha, probably as the result of increased availability of substrate to cyclooxygenase. Since perfusion with Ca2+ free buffer is known to cause alterations in the cardiac content of various mono- and divalent cations, the present study was performed to determine: a) The relationship between the conversion of exogenous arachidonic acid to prostaglandins and cardiac content of Na+, K+, Ca2+ and Mg2+; and b) Whether enhanced arachidonic acid conversion to prostaglandins during Ca2+ free perfusion is due to reduced incorporation of this fatty acid into tissue lipids. Perfusion of the rabbit heart with Ca2+ free buffer produced a significant reduction in the tissue content of Na+, K+, Ca2+ and Mg2+. However, the production of 6-keto-PGF1 alpha from exogenous arachidonic acid was linearly correlated with tissue Mg2+. These observations, together with our finding that perfusion with Ca2+ free KHB reduced the incorporation of [3H] arachidonic acid into tissue lipids, suggests that Ca2+ free perfusion may, by reducing the activity of arachidonyl CoA synthetase (a Mg2+ dependent enzyme), decrease the acylation of arachidonic acid into lipids, thus increasing the availability of arachidonic acid to cyclooxygenase.  相似文献   

3.
Many studies of electrogenic Na+ pumping in Purkinje strands have involved intracellular Na+ loading by exposure to 0 mM K+, followed by reexposure to K+. For sheep Purkinje strands the K+ concentration for half-maximal stimulation (K0.5) in such studies is higher than K0.5 of canine Purkinje strands. A model was developed to determine if gradients in the K+ concentration of extracellular fluid layers during enhanced pump activity can account for the discrepancy. Pump activity was assumed linearly dependent on [Na+]i and dependent on [K+]o, according to Michaelis-Menten kinetics. The model simulated diffusion of K+ across unstirred layers and both depletion and accumulation of K+ in extracellular clefts of Purkinje strands during changes in the K+ concentration of the tissue bath. Errors in estimates of K0.5 occurred when delay in achieving a steady state extracellular K+ concentration was simulated. The simulations suggested that a linear relationship between pump current and intracellular Na+, a monoexponential decay of pump current, independence of the rate constants for the current decay on the initial Na+ load and holding potential, and apparent Michaelis-Menten K+ kinetics is not sufficient evidence against pump-induced interstitial K+ depletion having introduced errors in determination of K0.5. It is concluded that interstitial K+ depletion may account for the difference between determinations of K0.5 in sheep and canine Purkinje strands.  相似文献   

4.
The retinal Na+:Ca2+, K+exchanger cDNA was transiently expressed in human embryonic kidney (HEK 293) cells by transfection with plasmid DNA. The correct targeting of the expressed protein to the plasma membrane was confirmed by immunocytochemistry. The reverse exchange offrent (Ca2+ imported per Na+ extruded) was measured in whole-cell voltage-clamp experiments after intracellular perfusion with Na+ (Na+i, 128 mM) and extracellular perfusion with Ca2+ (Ca2o+, 1 mM) and Ko+ (20 mM). As expected, the exchange current was suppressed by removing Ca2o+. Surprisingly, however, it was also abolished by increasing Na+o to almost abolish the Na+ gradient, and it was almost unaffected by the removal of Ko+. Apparently, then, at variance with the exchanger in the rod outer segment, the retinal exchanger expressed in 293 cells acts essentially as a Na+:Ca2+ exchanger and does not require K+ for its electrogenic activity.  相似文献   

5.
The dependence of Na pump activity on intracellular and extracellular Na+ and K+ was investigated using a suspension of rabbit cortical tubules that contained mostly (86%) proximal tubules. The ouabain- sensitive rate of respiration (QO2) was used to measure the Na pump activity of intact tubules, and the Na,K-ATPase hydrolytic activity was measured using lysed proximal tubule membranes. The dependence (K0.5) of the Na pump on intracellular Na+ was affected by the relative intracellular concentration of K+, ranging from approximately 10 to 15 mM at low K+ and increasing to approximately 30 mM as the intracellular K+ was increased. The Na pump had a K0.5 for extracellular K+ of 1.3 mM in the presence of saturating concentrations of intracellular Na+. Measurements of the Na,K-ATPase activity under comparable conditions rendered similar values for the K0.5 of Na+ and K+. The Na pump activity in the intact tubules saturated as a function of extracellular Na at approximately 80 mM Na, with a K0.5 of 30 mM. Since Na pump activity under these conditions could be further stimulated by increasing Na+ entry with the cationophore nystatin, these values pertain to the Na+ entry step and not to the Na+ dependence of the intracellular Na+ site. When tubules were exposed to different extracellular K+ concentrations and the intracellular Na+ concentration was subsaturating, the Na pump had an apparent K0.5 of 0.4 mM for extracellular K. Under normal physiological conditions, the Na pump is unsaturated with respect to intracellular Na+, and indirect analysis suggests that the proximal cell may have an intracellular Na+ concentration of approximately 35 mM.  相似文献   

6.
The effect of the plasma membrane potential delta psi p on the transport rate and steady state distribution of Li+ was assessed in rat cortical synaptosomes. Up to 15 mM Li+ failed to saturate Li+ influx into polarized synaptosomes in a Na+-based medium with 3 mM external K+. Veratridine increased and tetrodotoxin, ouabain, or high external K+ decreased the rate of Li+ influx. At steady state, Li+ was concentrated about 3-fold in resting synaptosomes at 0.3 to 1 mM Li+ externally. Subsequent depolarization of the plasma membrane by veratridine or high external K+ induced an immediate release of Li+. When graded depolarizations were imposed onto the plasma membrane by varying concentrations of ouabain, veratridine, or external K+, steady state distribution of Li+ was linearly related with K+ distribution or electrochemical activity coefficients. It was concluded that uptake rate and steady state distribution of Li+ depend significantly on delta psi p. However, Li+ gradients were lower than predicted from delta psi p, suggesting that (secondary) active transport systems counteracted passive equilibration by uphill extrusion of Li+. The electrochemical potential difference delta mu Li+ maintained at a delta psi p of -72 mV was calculated to 4.2 kJ/mol of Li+. At physiological external K+, Li+ was not actively transported by the sodium pump. The ouabain sensitivity resulted from the coupling of Li+ uptake to the pump-dependent K+ diffusion potential. In low K+ and K+-free media, however, active transport of Li+ by the sodium pump contributed to total uptake. In the absence of K+, Li+ substituted for K+ in generating a delta psi p of -64 mV maximally, as calculated from TPMP+ distribution at 40 mM external Li+. Since Li+ gradients were far too low to account for a diffusion potential, it was assumed that Li+ gave rise to an electrogenic pump potential.  相似文献   

7.
It is well-known that the first stage of the calcium paradox involves decreasing of Na+ gradient. The decreased sodium gradient is a cause of activation of the Na(+)-Ca+ exchange and formation of cardiac injury during the calcium repletion. Potassium ions are natural extracellular activators of Na(+)-pump. It has been shown that heart perfusion by Ca(2+)-free medium evoked extrusion from cells of hydrophilic amino acids whose transport-depends on sodium gradient. The heart reperdusion with Ca(2+)-containing agent leads to myofibrillar contracture and extensive myoglobin release. The simultaneous events are: elevation in tissue water contents, decreasing of intracellular concentration of adeninnucleotides, uncoupling of oxidation and phosphorylation in mitochondria. The decreasing of K+ level to 0.5 mM exacerbates myocardial damage during the calcium paradox, despite absence of myocardial contracture. The elevation of K+ (to 10 mM or 20 mM) attenuated the calcium paradox development in the heart. The elevated K+ concentration protected isolated heart from extensive myoglobin release, development of myocardial contracture. The high K+ concentrations alleviate mitochondrial damage and elevate contents of adeninnucleotide in the tissue. The positive effect of the elevated K+ concentration can be completely blocked by strophanthine, the selective Na+, K(+)-pumb blocker.  相似文献   

8.
The effects of various concentrations of extracellular K+ (3.6-13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca2+. Small amounts of EGTA (50 microM) were added to reduce the free Ca2+ concentrations effectively to zero at the lowest possible total Ca2+ concentration. At a total extracellular concentration of 2.5 mM Ca2+, in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K+. The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K+ compared with that at 3.6 mM were highly significant (p less than 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K+. Lowering the effective free concentration of Ca2+ to zero decreased the steroid and cAMP outputs significantly at all K+ concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K+ (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K+). Nifedipine (10(-6) to 10(-4) M) was added to the incubations with the aim of specifically inhibiting Ca2+ influx at total extracellular Ca2+ concentrations of 2.5, 1.25 and 0.25 mM and with the usual K+ concentrations. The cAMP outputs were reduced at all K+ concentrations above 3.6 mM K+. The effect was highly significant at 10(-4) M nifedipine and a total Ca2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca2+ concentrations in vivo. These results indicate that cAMP plays a significant role in the stimulation of steroid output by K+ particularly between 3.6 and 8.4 mM K+. In this range of K+ concentrations the stimulation of cAMP seems to be controlled by increases in Ca2+ influx. The correlation of steroid and cAMP output at the higher K+ concentrations (between 8.4 and 13 mM K) and at the various total Ca2+ concentrations is less significant. Also, with all concentrations of added nifedipine there is an 'anomalous' increase in steroid output at 13 mM K+ and at total Ca2+ concentrations of 2.5 and 1.25 mM. However, at the same K+ concentrations and at 0.25 mM Ca2+, nifedipine decreases steroid outputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart. 2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation. The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart. 3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, alpha-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio. In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking. The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+. The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

10.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

11.
Cerebrocortical minislices derived from control rats ("control slices") and from rats with thioacetamide (TAA)-induced hepatic failure showing moderate hyperammonemia and symptoms of hepatic encephalopathy (HE) ("HE slices"), were incubated with physiological saline in the absence or presence of 5 mM ammonium acetate ("ammonia"), at potassium ion (K+) concentrations ranging from 5 to 15 mM. The efflux of endogenous aspartate (Asp), glutamate (Glu) and taurine (Tau) to the incubation medium was assayed by HPLC. At 5 mM K+, perfusion of control slices with ammonia did not affect Glu and slightly depressed Asp efflux. Raising K+ concentrations in the incubation medium to 7.5 led to inhibition of Glu and Asp efflux by ammonia and the inhibitory effect was further potentiated at 10 mM K+. The inhibition was also significant at 15 mM K+. This suggests that, depression of excitatory neurotransmission associated with acute hyperammonemia is more pronounced under conditions of intense neuronal activity than in the resting state. HE moderately increased the efflux of Glu and Asp, and the stimulatory effect of HE on Glu and Asp efflux showed virtually no variation upon changing K+ concentration up to 15 mM. Ammonia strongly, and HE moderately, increased Tau efflux at 5 mM K+. However, both the ammonia- and HE-dependent Tau efflux decreased with increasing K+ concentration in the medium and was no longer significant at 10 mM concentration, indicating that intense neuronal activity obliterates the neuroprotective functions of this amino acid triggered by hyperammonemia.  相似文献   

12.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

13.
The effect of penicillic acid on isolated frog's heart has been studied along with ions of Na+,K+ and Ca2+. Penicillic acid has been found to inhibit the entry of these ions into cardiac tissue thereby arresting the action of the heart. The blockage can be washed away by perfusion with Ringer's solution.  相似文献   

14.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

15.
The objective of the present investigation was to characterize the ATP-dependent Na+-Na+ exchange, with respect to cation sensitivity on the two aspects of the Na+/K+-pump protein. In order to accomplish this, we used Na+/K+-ATPase reconstituted with known orientation in the proteoliposomes. Activation by cytoplasmic Na+ shows cooperative interaction between three sites. The apparent intrinsic site constants displayed transmembrane dependence on the extracellular Na+ concentration. However, the apparent K0.5 for cytoplasmic Na+ is independent of the extracellular Na+ concentration. The activation by extracellular Na+ at a fixed cytoplasmic Na+ concentration is biphasic with a component which saturates at a concentration of about 1-2 mM extracellular Na+, a plateau phase up to 20 mM, and another component which tends to saturate at about 80 mM followed by a slight deactivation at higher concentrations of Na+. The apparent K0.5 value for extracellular Na+ is also found to be independent of the Na+ concentration on the opposite side of the membrane. The activation by extracellular Na+ can be explained by the negative cooperativity in the binding of extracellular Na+, but positive cooperativity in the rate of dephosphorylation of enzyme species with one and three sodium ions bound extracellularly. Na+ bound to E2-PNa has a transmembrane effect on the cooperativity between binding of cytoplasmic Na+, and E2-PNa2 does not dephosphorylate. K0.5/Vm for cytoplasmic as well as for extracellular Na+ decreases with an increase in the trans Na+ concentration in the non-saturating concentration range. The experiments indicate that at a step in the reaction simultaneous binding of extracellular and cytoplasmic Na+ occurs.  相似文献   

16.
We investigated possible pre- and postsynaptic effects of K+-induced depolarization on ferret tracheal smooth muscle (TSM) responsiveness to cholinergic stimulation. To assess electromechanical activity, cell membrane potential (Em) and tension (Tm) were simultaneously recorded in buffer containing 6, 12, 18, or 24 mM K+ before and after electrical field stimulation (EFS) or exogenous acetylcholine (ACh). In 6 mM K+, Em was -58.1 +/- 1.0 mV (mean +/- SE). In 12 mM K+, Em was depolarized to -52.3 +/- 0.9 mV, basal Tm did not change, and both excitatory junctional potentials and contractile responses to EFS at short stimulus duration were larger than in 6 mM K+. No such potentiation occurred at a higher K+, although resting Em and Tm increased progressively above 12 mM K+. The sensitivity of ferret TSM to exogenous ACh appeared unaffected by K+. To determine whether the hyperresponsiveness in 12 mM K+ was due, in part, to augmented ACh release from intramural airway nerves, experiments were done using TSM preparations incubated with [3H]choline to measure [3H]ACh release at rest and during EFS. Although resting [3H]ACh release increased progressively in higher K+, release evoked by EFS was maximal in 12 mM K+ and declined in higher concentrations. We conclude that small elevations in the extracellular K+ concentration augment responsiveness of the airways, by increasing the release of ACh both at rest and during EFS from intramural cholinergic nerve terminals. Larger increases in K+ appear to be inhibitory, possibly due to voltage-dependent effects that occur both pre- and postsynaptically.  相似文献   

17.
The content of trace elements necessary for the normal growth of bacteria was found to have no effect on the intracellular concentration of Ca2+ and Al3+. The content of Cu2+, Fe3+, Mn2+, Mg2+ was considerably reduced. The addition of Mg2+ at different concentrations to this culture medium stimulated the capacity of cells for accumulating not only Mg2+, but also some other ions. Their maximum intracellular concentration was observed when the concentration of Mg2+ in the culture medium was 41 mM. The growth of microbial cells in the standard culture medium containing Mg2+ at a concentration of 4 mM was accompanied by the increased consumption of elements actively participating in redox reactions (Cu2+, Fe3+, Mn2+). Shifts in the ionic composition of microbial cells were manifested by the morphological features of B. pertussis, linked with the increased synthesis of crystalloid structures. The influence of Mn2+, Al3+, Zn2+ at different concentrations on the ionic composition and morphology of B. pertussis was studied.  相似文献   

18.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

19.
Membrane phosphorylation and nucleoside triphosphatase activity of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were studied using ATP and ITP as substrates. The Ca2+ concentration was varied over a range large enough to saturate either the high affinity Ca2+-binding site or both high and low affinity binding sites. In intact vesicles, which are able to accumulate Ca2+, the steady state level of enzyme phosphorylated by either ATP or ITP is already high in 0.02 mM Ca2+ and does not vary as the Ca2+ concentration is increased to 10 mM. Essentially the same pattern of membrane phosphorylation by ATP is observed when leaky vesicles, which are unable to accumulate Ca2+, are used. However, for leaky vesicles, when ITP is used as substrate, the phosphoenzyme level increases 3- to 4-fold when the Ca2+ concentration is raised from 0.02 to 20 mM. When Mg2+ is omitted from the assay medum, the degree of membrane phosphorylation by ATP varies with Ca2+ in the same way as when ITP is used in the presence of Mg2+. Membrane phosphorylation of leaky vesicles by either ATP or ITP is observed in the absence of added Mg2+. When these vesicles are incubated in media containing ITP and 0.1 mM Ca2+, addition of Mg2+ up to 10 mM simultaneously decreases the steady state level of phosphoenzyme and increases the rate of ITP hydrolysis. When ATP is used, the addition of 10 mM Mg2+ increases both the steady state level of phosphoenzyme and the rate of ATP hydrolysis. When the Ca2+ concentration is raised to 10 or 20 mM, the degree of membrane phosphorylation by either ATP or ITP is maximal even in the absence of added Mg2+ and does not vary with the addition of 10 mM Mg2+. In these conditions the ATPase and ITPase activities are activated by Mg2+, although not to the level observed in 0.1 mM Ca2+. An excess of Mg2+ inhibits both the rate of hydrolysis and membrane phosphorylation by either ATP or ITP.  相似文献   

20.
Neuronal and glial enriched fractions were incubated in a medium with 10mM pyruvate, 5mM fumarate and 0.9mM 5'-AMP and the effect of increased external K+ concentrations was studied upon oxygen uptake. A concentration of 65 mM K+ had a different effect on the oxygen consumption of glial and neuronal perikarya. The rate of oxygen uptake by glia was stimulated by 52.81% whilst an insignificant decrease of 15.79% occurred in the neurones. The highest rate of oxygen uptake by incubated cells was estimated in the presence of the substrate system containing pyruvate, fumarate and 5'-AMP. The significance of components in the substrate system for a high rate of oxygen uptake by cells was also tested with 6.2 mM K+ and 65 mM K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号