首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short sequence repeats (SSRs) with a potential variable number of tandem repeat (VNTR) loci were identified in the genome of the citrus pathogen Xylella fastidiosa and used for typing studies. Although mono- and dinucleotide repeats were absent, we found several intermediate-length 7-, 8-, and 9-nucleotide repeats, which we examined for allelic polymorphisms using PCR. Five genuine VNTR loci were highly polymorphic within a set of 27 X. fastidiosa strains from different hosts. The highest average Nei's measure of genetic diversity (H) estimated for VNTR loci was 0.51, compared to 0.17 derived from randomly amplified polymorphic DNA (RAPD) analysis. For citrus X. fastidiosa strains, some specific VNTR loci had a H value of 0.83, while the maximum value given by specific RAPD loci was 0.12. Our approach using VNTR markers provides a high-resolution tool for epidemiological, genetic, and ecological analysis of citrus-specific X. fastidiosa strains.  相似文献   

2.
Xylella fastidiosa was isolated from sweet orange plants (Citrus sinensis) grown in two orchards in the northwest region of the Brazilian state of S?o Paulo. One orchard was part of a germ plasm field plot used for studies of citrus variegated chlorosis resistance, while the other was an orchard of C. sinensis cv. Pêra clones. These two collections of strains were genotypically characterized by using random amplified polymorphic DNA (RAPD) and variable number of tandem repeat (VNTR) markers. The genetic diversity (H(T)) values of X. fastidiosa were similar for both sets of strains; however, H(T)(RAPD) values were substantially lower than H(T)(VNTR) values. The analysis of six strains per plant allowed us to identify up to three RAPD and five VNTR multilocus haplotypes colonizing one plant. Molecular analysis of variance was used to determine the extent to which population structure explained the genetic variation observed. The genetic variation observed in the X. fastidiosa strains was not related to or dependent on the different sweet orange varieties from which they had been obtained. A significant amount of the observed genetic variation could be explained by the variation between strains from different plants within the orchards and by the variation between strains within each plant. It appears, therefore, that the existence of different sweet orange varieties does not play a role in the population structure of X. fastidiosa. The consequences of these results for the management of sweet orange breeding strategies for citrus variegate chlorosis resistance are also discussed.  相似文献   

3.
Genetic relationships among 11 Xylella fastidiosa strains isolated from mulberry, almond, ragweed, grape, plum, elm, and citrus were determined by random amplified polymorphic DNA (RAPD). Twenty-two 10-base primers amplified a total of 77 discrete polymorphic bands. Phenetic analysis based on a similarity matrix corresponded well with previous reports on X. fastidiosa RFLP-based similarity relationships, indicating that RAPD-PCR amplification products can be used as a reliable indicator of genetic distance in X. fastidiosa. Cladistic analysis suggests the existence of five groups of X. fastidiosa: the citrus group, the plum-elm group, the grape-ragweed group, the almond group, and the mulberry group.  相似文献   

4.
Xylella fastidiosa is a vector-borne, plant-pathogenic bacterium that causes disease in citrus (citrus variegated chlorosis [CVC]) and coffee (coffee leaf scorch [CLS]) plants in Brazil. CVC and CLS occur sympatrically and share leafhopper vectors; thus, determining whether X. fastidiosa isolates can be dispersed from one crop to another and cause disease is of epidemiological importance. We sought to clarify the genetic and biological relationships between CVC- and CLS-causing X. fastidiosa isolates. We used cross-inoculation bioassays and microsatellite and multilocus sequence typing (MLST) approaches to determine the host range and genetic structure of 26 CVC and 20 CLS isolates collected from different regions in Brazil. Our results show that citrus and coffee X. fastidiosa isolates are biologically distinct. Cross-inoculation tests showed that isolates causing CVC and CLS in the field were able to colonize citrus and coffee plants, respectively, but not the other host, indicating biological isolation between the strains. The microsatellite analysis separated most X. fastidiosa populations tested on the basis of the host plant from which they were isolated. However, recombination among isolates was detected and a lack of congruency among phylogenetic trees was observed for the loci used in the MLST scheme. Altogether, our study indicates that CVC and CLS are caused by two biologically distinct strains of X. fastidiosa that have diverged but are genetically homogenized by frequent recombination.  相似文献   

5.
Pierce's disease (PD) strains of Xylella fastidiosa were identified by random amplified polymorphic DNA (RAPD) fingerprinting. Two random primers including OPA-03 (agtcagccac) and OPA-11 (caatcgccgt) were found to be efficient for differentiating PD strains isolated from a vineyard in North Florida in 1996 (129 strains) and 1997 (29 strains) from non-PD strains of X. fastidiosa (citrus variegated chlorosis, mulberry leaf scorch, periwinkle wilt, plum leaf scald, and phony peach) and strains from Xanthomonas campestris pv. vesicatoria and Escherichia coli. This study shows that RAPD fingerprinting is a useful tool to supplement the conventional symptoms-colony morphology-slow growth identification procedure routinely used to identify the PD pathogen.  相似文献   

6.
Xylella fastidiosa was isolated from sweet orange plants (Citrus sinensis) grown in two orchards in the northwest region of the Brazilian state of São Paulo. One orchard was part of a germ plasm field plot used for studies of citrus variegated chlorosis resistance, while the other was an orchard of C. sinensis cv. Pêra clones. These two collections of strains were genotypically characterized by using random amplified polymorphic DNA (RAPD) and variable number of tandem repeat (VNTR) markers. The genetic diversity (HT) values of X. fastidiosa were similar for both sets of strains; however, HTRAPD values were substantially lower than HTVNTR values. The analysis of six strains per plant allowed us to identify up to three RAPD and five VNTR multilocus haplotypes colonizing one plant. Molecular analysis of variance was used to determine the extent to which population structure explained the genetic variation observed. The genetic variation observed in the X. fastidiosa strains was not related to or dependent on the different sweet orange varieties from which they had been obtained. A significant amount of the observed genetic variation could be explained by the variation between strains from different plants within the orchards and by the variation between strains within each plant. It appears, therefore, that the existence of different sweet orange varieties does not play a role in the population structure of X. fastidiosa. The consequences of these results for the management of sweet orange breeding strategies for citrus variegate chlorosis resistance are also discussed.  相似文献   

7.
Strains of Xylella fastidiosa isolated from grape, almond, maple, and oleander were characterized by enterobacterial repetitive intergenic consensus sequence-, repetitive extragenic palindromic element (REP)-, and random amplified polymorphic DNA (RAPD)-PCR; contour-clamped homogeneous electric field (CHEF) gel electrophoresis; plasmid content; and sequencing of the 16S-23S rRNA spacer region. Combining methods gave greater resolution of strain groupings than any single method. Strains isolated from grape with Pierce's disease (PD) from California, Florida, and Georgia showed greater than previously reported genetic variability, including plasmid contents, but formed a cluster based on analysis of RAPD-PCR products, NotI and SpeI genomic DNA fingerprints, and 16S-23S rRNA spacer region sequence. Two groupings of almond leaf scorch (ALS) strains were distinguished by RAPD-PCR and CHEF gel electrophoresis, but some ALS isolates were clustered within the PD group. RAPD-PCR, CHEF gel electrophoresis, and 16S-23S rRNA sequence analysis produced the same groupings of strains, with RAPD-PCR resolving the greatest genetic differences. Oleander strains, phony peach disease (PP), and oak leaf scorch (OLS) strains were distinct from other strains. DNA profiles constructed by REP-PCR analysis were the same or very similar among all grape strains and most almond strains but different among some almond strains and all other strains tested. Eight of 12 ALS strains and 4 of 14 PD strains of X. fastidiosa isolated in California contained plasmids. All oleander strains carried the same-sized plasmid; all OLS strains carried the same-sized plasmid. A plum leaf scald strain contained three plasmids, two of which were the same sizes as those found in PP strains. These findings support a division of X. fastidiosa at the subspecies or pathovar level.  相似文献   

8.
By cloning and sequencing specific randomly amplified polymorphic DNA (RAPD) products, we have developed pairs of PCR primers that can be used to detect Xylella fastidiosa in general, and X. fastidiosa that cause citrus variegated chlorosis (CVC) specifically. We also identified a CVC-specific region of the X. fastidiosa genome that contains a 28-nucleotide insertion, and single base changes that distinguish CVC and grape X. fastidiosa strains. When using RAPD products to develop specific PCR primers, we found it most efficient to screen for size differences among RAPD products rather than presence/absence of a specific RAPD band.  相似文献   

9.
Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.  相似文献   

10.
Minisatellites are highly variable tandem repeats used for over 20 years in humans for DNA fingerprinting. In prokaryotes fingerprinting techniques exploiting VNTR (variable number of tandem repeats) polymorphisms have become widely used recently in bacterial typing. However although many investigations into the mechanisms underlying minisatellite variation in humans have been performed, relatively little is known about the processes that mediate bacterial minisatellite polymorphism. An understanding of this is important since it will influence how the results from VNTR experiments are interpreted. The minisatellites of Mycobacterium tuberculosis are well characterized since they are some of the few polymorphic loci in what is otherwise a very homogeneous organism. Using VNTR results from a well-defined and characterized set of M. tuberculosis strains we show that the repeats at a locus are likely to evolve by stepwise contraction or expansion in the number of repeats. A stochastic continuous-time population mathematical model was developed to simulate the evolution of the repeats. This allowed estimation of the tendency of the repeats to increase or decrease and the rate at which they change. The majority of loci tend to lose rather than gain repeats. All of the loci mutate extremely slowly, with an average rate of 2.3 x 10(-8), which is 350 times slower than that of a set of VNTR repeats with similar diversity observed experimentally in Escherichia coli. This suggests that the VNTR profile of a strain of M. tuberculosis will be indicative of its clonal lineage and will be unlikely to vary in epidemiologically-related strains.  相似文献   

11.
Vector-borne generalist pathogens colonize several reservoir species and are usually dependent on polyphagous arthropods for dispersal; however, their spatial genetic structure is generally poorly understood. Using fast-evolving genetic markers (20 simple sequence repeat loci, resulting in a total of 119 alleles), we studied the genetic structure of the vector-borne plant-pathogenic bacterium Xylella fastidiosa in Napa Valley, CA, where it causes Pierce's disease when it is transmitted to grapevines from reservoir plants in adjacent riparian vegetation. Eighty-three different X. fastidiosa multilocus microsatellite genotypes were found in 93 isolates obtained from five vineyards, resulting in an index of clonal fraction closer to 0 and a Simpson's genotypic diversity index (D) closer to a maximum value of 1. Moderate values of Nei's gene diversity (H(Nei); average H(Nei) = 0.41) were observed for most of the X. fastidiosa populations. The low Wright's index of genetic diversity among populations calculated by the FSTAT software (Wright's F(ST) index) among population pairs (0.0096 to 0.1080) indicated a weak or absent genetic structure among the five populations; a panmictic population was inferred by Bayesian analyses (with the STRUCTURE and BAPS programs). Furthermore, a Mantel test showed no significant genetic isolation by distance when both Nei (r = -0.3459, P = 0.268) and linearized (r = -0.3106, P = 0.269) indices were used. These results suggest that the riparian vegetation from which vectors acquire the pathogen prior to inoculation of grapevines supports a diverse population of X. fastidiosa.  相似文献   

12.
Xylella fastidiosa is a gram-negative plant pathogenic bacterium that causes almond leaf scorch disease (ALSD) and Pierce's disease (PD) of grape in many regions of North America and Mexico. Of the two 16S rRNA gene genotypes described in California, A genotype strains cause ALSD only and G genotype strains cause both PD and ALSD. While G genotype strains cause two different diseases, little is known about their genetic variation. In this study, we identified a putative protease locus, PD0218 (pspB), in the genome of X. fastidiosa and evaluated the variation at this locus in X. fastidiosa populations. PD0218 contains tandem repeats of ACDCCA, translated to threonine and proline (TP), upstream of the putative protease conserved domain. Among 116 X. fastidiosa ALSD and PD strains isolated from seven locations in California, tandem repeat numbers (TRNs) varied from 9 to 47, with a total of 30 TRN genotypes, indicating that X. fastidiosa possesses an active mechanism for contracting and expanding tandem repeats at this locus. Significant TRN variation was found among PD strains (mean = 29.9), which could be further divided into two TRN groups: PD-G(small) (mean = 17.3) and PD-G(large) (mean = 44.3). Less variation was found in ALSD strains (mean = 21.7). The variation was even smaller after ALSD strains were subdivided into the A and G genotypes (mean = 13.3, for the G genotype; mean = 27.1, for the A genotype). Genetic variation at the PD0218 locus is potentially useful for sensitive discrimination of X. fastidiosa strains. However, TRN stability, variation range, and correlation to phenotypes should be evaluated in epidemiological applications such as pathotype identification and delineation of pathogen origin.  相似文献   

13.
14.
15.
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.  相似文献   

16.
AIMS: The aim of this study was to evaluate the diversity of Xylella fastidiosa isolated from citrus trees affected by Citrus Variegated Chlorosis (CVC). METHODS AND RESULTS: The antibiotic susceptibility by agar disc diffusion and minimum inhibitory concentration (MIC) methods was observed for all drug evaluated, except for penicillin-G. Genetic diversity by RAPD analysis revealed three major groups (citrus, coffee and grapevine), being the citrus group more similar with the coffee group than with the grapevine group. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the possibility to use these antibiotics susceptibility as markers in the development of a cloning vector and penicillin-G could be used as a selective marker for the isolation of X. fastidiosa from citrus plants.  相似文献   

17.
Random-amplified polymorphic DNA (RAPD) and microsatellite markers were developed and used for the analysis of genetic variability in the critically endangered yellow catfish Horabagrus nigricollaris, sampled from the Chalakkudy River, Kerala, India. Eight RAPD and five microsatellite markers were detected to genotype the species. In RAPD, the 73 fragments were 20.55% polymorphic, whereas 4 polymorphic loci (80%) were obtained in microsatellites. In microsatellites, the number of alleles across the 5 loci was 1-5, and the range of heterozygosity was 0.25-0.5. The mean observed number of alleles was 2.4, and the effective number was 1.775 per locus. The average heterozygosity across all investigated samples was 0.29, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods report a low degree of gene diversity and lack of genetic heterogeneity in the population of H. nigricollaris, emphasizing the need for fishery management, conservation, and rehabilitation of this species.  相似文献   

18.
AIM: Evaluation of the Escherichia coli genome for variable number tandem repeat (VNTR) loci in order to provide a subtyping tool with greater discrimination and more efficient capacity. METHODS AND RESULTS: Twenty-nine putative VNTR loci were identified from the E. coli genomic sequence. Their variability was validated by characterizing the number of repeats at each locus in a set of 56 E. coli O157:H7/HN and O55:H7 isolates. An optimized multiplex assay system was developed to facility high capacity analysis. Locus diversity values ranged from 0.23 to 0.95 while the number of alleles ranged from two to 29. This multiple-locus VNTR analysis (MLVA) data was used to describe genetic relationships among these isolates and was compared with PFGE (pulse field gel electrophoresis) data from a subset of the same strains. Genetic similarity values were highly correlated between the two approaches, through MLVA was capable of discrimination amongst closely related isolates when PFGE similar values were equal to 1.0. CONCLUSIONS: Highly variable VNTR loci exist in the E. coli O157:H7 genome and are excellent estimators of genetic relationships, in particular for closely related isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157:H7 MLVA offers a complimentary analysis to the more traditional PFGE approach. Application of MLVA to an outbreak cluster could generate superior molecular epidemiology and result in a more effective public health response.  相似文献   

19.
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.  相似文献   

20.
AIMS: Detection of Xylella fastidiosa in citrus plants and insect vectors. METHODS AND RESULTS: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay. CONCLUSIONS: The use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号