首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dietary vitamin E on in vivo and in vitro damage by methyl ethyl ketone peroxide (MEKP) to cytochrome P-450 and its associated enzymatic activity was studied. In vivo, MEKP damaged microsomal cytochrome P-450 and cytochrome P-450-mediated peroxidases in vitamin E-deficient rat liver. Dietary vitamin E treatment of rats protected the microsomal enzymes from peroxide damage. In vitro, the extent of MEKP inhibition was different for tetramethylphenylenediamine (TMPD)-peroxidase, NADH-peroxidase, and aminopyrine demethylase. In vitro addition of MEKP induced production of more thiobarbituric acid reacting substances (TBARS) in liver microsomes from vitamin E-deficient rats than from vitamin E-supplemented rats. When NADH and/or NADPH were supplied as reductants of MEKP, the inhibition of aminopyrine demethylase activity and the generation of TBARS by added MEKP were markedly reduced. In vivo, adequate levels of vitamin E and of NADH and NADPH are probably necessary to provide important protection to the endoplasmic reticulum during metabolism of toxic organic peroxides, such as MEKP.  相似文献   

2.
The ability of a microsomal enzyme, glucose dehydrogenase (hexose 6-phosphate dehydrogenease) to supply NADPH to the microsomal electron transport system, was investigated. Microsomes could perform oxidative demethylation of aminopyrine using microsomal glucose dehydrogenase in situ as an NADPH generator. This demethylation reaction had apparent Km values of 2.61 X 10(-5) M for NADP+, 4.93 X 10(-5) m for glucose 6-phosphate, and 2.14 X 10(-4) m for 2-deoxyglucose 6-phosphate, a synthetic substrate for glucose dehydrogenase. Phenobarbital treatment enhanced this demethylation activity more markedly than glucose dehydrogenase activity itself. Latent activity of glucose dehydrogenase in intact microsomes could be detected by using inhibitors of microsomal electron transport, i.e. carbon monoxide and p-chloromercuribenzoate (PCMB), and under anaerobic conditions. These observations indicate that in microsomes the NADPH generated by glucose dehydrogenase is immediately oxidized by NADPH-cytochrome c reductase, and that glucose dehydrogenase may be functioning to supply NADPH.  相似文献   

3.
The effects of dietary antioxidant vitamins E and C on exercise endurance capacity and mitochondrial oxidation were investigated in rats. The endurance capacity of both vitamin E-deficient and vitamin C-supplemented, E-deficient rats was significantly (P less than 0.05) lower (38.1 and 33.6%, respectively) than control animals. Compared with the normal and vitamin E-deficient rats, there was a significant (P less than 0.05) increase in the concentration of vitamin C in blood and liver of the vitamin E-deficient, C-supplemented animals. Hence dietary vitamin C supplementation does not prevent the inhibition of exercise endurance capacity or increased hemolysis seen in vitamin E deficiency. The mitochondrial activities for the oxidation of palmitoyl carnitine and alpha-ketoglutarate were significantly (P less than 0.05) decreased by a single bout of exercise in brown adipose tissue but not in muscle, heart, or liver from vitamin C-supplemented, E-deficient groups of rats when compared with the activities in the tissue from the same group of rats killed at rest. Similar results were also seen in brown adipose tissue from vitamin E-deficient rats. The results suggest a tissue-specific role for vitamins E and C in substrate oxidation and show that the poor endurance capacity of vitamin E-deficient rats cannot be attributed to any changes in the mitochondrial activity in skeletal or cardiac muscles. It is also concluded that vitamin C supplementation, at least at the dose employed in the present study, cannot counteract the detrimental effects associated with vitamin E deficiency.  相似文献   

4.
The aim of this study was to investigate the relationship between endothelial dysfunction and low density lipoprotein (LDL) size and susceptibility to oxidation in nephrotic rats with or without deficiency of vitamin E and selenium. Four groups of male Wistar rats were studied: control (C), vitamin E and selenium deficient control (DefC), nephrotic (NS), and vitamin E and selenium deficient NS (DefNS). Nephrotic syndrome was induced by puromycin aminonucleoside. The molar ratio of vitamin E/LDL-cholesterol was significantly lower in DefNS, DefC rats, and NS vs. C rats. In comparison with control animals, vasodilation and LDL oxidability were significantly lower in nephrotic animals. LDL size was similar in all groups. Abnormal endothelial function in response to acetylcholine and carbachol was observed in NS animals compared to control rats. Relaxation response was inversely associated with an increase in LDL susceptibility to oxidation and with a lower molar ratio of vitamin E/LDL-c. LDL oxidability and LDL-c were the only variables independently associated with vasodilation. These results suggest that endothelial dysfunction of NS may be a consequence of the increased LDL susceptibility to oxidation, secondary to antioxidant deficiency.  相似文献   

5.
Given the capacity of ruminants to modify diet selection based on metabolic needs, we hypothesised that, when given a choice, lambs experiencing a vitamin E deficiency would consume more of a vitamin E-enriched feed than lambs not deficient in vitamin E. Fifty-six Dohne Merino lambs were divided into two groups and fed either a vitamin E-deficient diet over 40 days to induce low plasma vitamin E or a vitamin E-enriched diet to induce high plasma vitamin E. The lambs were then offered a choice of vitamin E-enriched and vitamin E-deficient pellets. For half of the animals, the enriched diet was paired with strawberry flavour and the deficient diet was paired with orange flavour, while the reverse pairings were offered to the others. Lamb preference for the diets was measured daily for the following 15 days. There was a three-way interaction between the high and low vitamin E treatment groups×vitamin E content and type of flavour in the feed×time (days). The lambs preferred pellets flavoured with strawberry but this preference changed to orange flavour in vitamin E-deficient lambs if the orange flavour was paired with high vitamin E. Lambs without a deficiency continued to prefer strawberry-flavoured pellets, regardless of the vitamin E concentrations in the pellets. It is possible that self-learning contributed to the low vitamin E group of lambs changing preference to orange flavour in order to consume more vitamin E, presumably to remediate the deficiency.  相似文献   

6.
4 x 5 growing female rabbits (New Zealand White) with an initial live weight of 610 +/- 62 g were fed a torula yeast based semisynthetic diet low in selenium (<0.03 mg/kg diet) and containing <2 mg alpha-tocopherol per kg (group I). Group II received a vitamin E supplementation of 150 mg alpha-tocopherylacetate per kg diet, whereas for group III 0.40 mg Se as Na-selenite and for group IV both supplements were added. Selenium status and parameters of tissue damage were analyzed after 10 weeks on experiment (live weight 2,355 +/- 145 g). Selenium depletion of the Se deficient rabbits (groups I and II) was indicated by a significantly lower plasma Se content (group I: 38.3 +/- 6.23 microg Se/mL plasma, group II: 42.6 +/- 9.77, group III: 149 +/- 33.4, group IV: 126 +/- 6.45) and a significantly lower liver Se content (group I: 89.4 +/- 18.2 microg/kg fresh matter, group II: 111 +/- 26.2) as compared to the Se supplemented groups III (983 +/- 204) and IV (926 +/- 73.9). After 5 weeks on the experimental diets differences in the development of plasma glutathione peroxidase were observed. As compared to the initial status group (45.2 +/- 4.50) pGPx activity in mU/mg protein was decreased in group I (19.1 +/- 7.08), remained almost stable in the vitamin E supplemented group II (46.3 +/- 11.2) whereas an elevated enzyme activity was measured in the Se supplemented groups III (62.4 +/- 23.9) and IV (106 +/- 19.9). In the rabbit organs investigated 10 weeks of Se deficiency caused a significant loss of Se dependent cellular glutathione peroxidase activity (GPx1) of 94% (liver), 80% (kidney), 50% (heart muscle) and 60% (musculus longissimus dorsi) in comparison to Se supplemented control animals. Damage of cellular lipids and proteins in the liver was due to either Se or vitamin E deficiency. However damage was most severe under conditions of a combined Se and vitamin E deficiency. It can be concluded that the activity of plasma glutathione peroxidase is a sensitive indicator of Se deficiency in rabbits. The loss of GPx1 activity indicates the selenium depletion in various rabbit organs. Both selenium and vitamin E are essential and highly efficient antioxidants which protect rabbits against lipid and protein oxidation.  相似文献   

7.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

8.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   

9.
One-day-old chicks were reared using diets differing in their vitamin E and/or selenium content. The purpose of this research was to detect any possible imbalance in the antioxidant defense system, which could be related to development of nutritional pancreatic atrophy. Mitochondrial membranes from animals deficient in both nutrients, or just vitamin E, submitted to peroxidizability ‘in vitro’ had the production of TBARS greatly enhanced. Measurements of the 2-GSH/GSSG ratio suggested that selenium and vitamin E, the latter in higher magnitude, were responsible for maintenance of the reducing capacity of the cell. Enzymatic defense systems against oxidative stress were also studied. The results indicated that the total antioxidant enzymatic activity of pancreatic cells was not sufficient to scavenge all the ROS generated in the nutritionally deficient animals. The present study suggests that nutritional deficiency of selenium and/or vitamin E generates one imbalance between pro-oxidant and antioxidant systems in chicken pancreas, leading to oxidative stress and pancreatic atrophy.  相似文献   

10.
Effect of vitamin E on adjuvant arthritis in rats   总被引:1,自引:0,他引:1  
Adjuvant arthritis was induced in rats fed a diet deficient in or supplemented with vitamin E, and its severity was scored according to the macroscopic findings of their legs, tails, and ears. The average score so obtained was higher in the vitamin E-deficient diet group than in the group of rats supplemented with vitamin E. Whereas the A/G ratio remained depressed in vitamin E-deficient rats, rats on a vitamin E-supplemented diet showed a fast recovery from A/G-ratio depression. The serum levels of beta-glucuronidase and acid phosphatase were elevated after administration of an adjuvant. The serum levels of these lysosomal enzymes showed a remarkable increase in rats fed a vitamin E-deficient diet, while the elevation in lysosomal enzyme levels in rats fed a vitamin E-supplemented diet was inhibited. The levels of thiobarbituric acid (TBA) reactants in the synovia were elevated at 2 weeks after exposure to the adjuvant and were decreased thereafter. In rats maintained on a diet supplemented with vitamin E, on the other hand, the increase in synovial level of TBA reactive substances was inhibited. These observations suggest that the aggravation of adjuvant arthritis may be associated with lipid peroxidation and that antioxidants, such as vitamin E, may be beneficial for arthritis.  相似文献   

11.
Relationship between selenium, immunity and resistance against infection   总被引:2,自引:0,他引:2  
1. Food selenium content, selenium supply and selenium needs are presented, along with methods of evaluation of selenium status. Glutathione peroxidase, a selenium-containing enzyme, is ubiquitous in the organism. 2. Some experimental studies on animal models reported a positive relationship between selenium status and resistance against infections. 3. Only one study in humans concerned the mechanisms of immune functions in selenium deficiency. Several experimental works suggest that severe selenium deficiency compromises T-cell dependent immune functions such as the blastogenic response to mitogens, but selenium deficiency was concomitant with vitamin E deficiency in most of them. Delayed hypersensitivity response is controversial in selenium-supplemented rats and guinea-pigs. 4. Selenium deficiency in animals decreases the antibody response, especially if associated with vitamin E deficiency. Low dietary selenium supplementation of healthy animals has a positive effect upon humoral responses. 5. Despite some controversies, most experimental studies on selenium-deficient animals report normal phagocytosis and an altered bactericidal capacity of neutrophils. The decrease in glutathione peroxidase activity of polymorphonuclear cells following selenium deficiency could explain some of these alterations. 6. Splenic Natural Killer cells activity is enhanced in selenium-supplemented, healthy animals.  相似文献   

12.
A soybean protein diet was used to induce vitamin E deficiency in rhesus monkeys. The deficient monkeys had reduced triglyceride concentrations in liver and skeletal muscle, but the cholesterol concentration in their skeletal muscle was increased. A constant amount of radioactively labeled (3)H-cholesterol-7alpha-(3)H was fed daily for 48-114 days to control and vitamin E-deficient monkeys to study the relationship between plasma, liver, and skeletal muscle cholesterol. Plasma cholesterol reached constant, maximum specific activity by the 42nd day both in control and in vitamin E-deficient monkeys. In control and previously deficient vitamin E-treated monkeys the specific activity of cholesterol in liver and skeletal muscle was approximately equal to that of plasma. In vitamin E-deficient monkeys the liver cholesterol specific activity was equal to that of plasma cholesterol, but the ratio of skeletal muscle cholesterol specific activity to plasma cholesterol specific activity was reduced. It is concluded from these studies that there is a specific defect(s) in cholesterol metabolism in the skeletal muscle of vitamin E-deficient monkeys.  相似文献   

13.
The chain-breaking (peroxyl radical-trapping) antioxidant activity of plasma obtained from several patients with a very severe vitamin E deficiency has been measured. The total chain-breaking antioxidant activity in lipid extracts has been shown to be approximately equal to the concentration of vitamin E. For whole plasma there is no significant difference in the concentrations of water-soluble, chain-breaking antioxidants between the E-deficient patients and healthy adults. It is concluded that even in cases of very severe vitamin E deficiency the requirement for this vitamin is not met by some other exogenous or endogenous antioxidant.  相似文献   

14.
Selenium deficiency and vitamin E deficiency both affect xenobiotic metabolism and toxicity. In addition, selenium deficiency causes changes in the activity of some glutathione-requiring enzymes. We have studied glutathione metabolism in isolated hepatocytes from selenium-deficient, vitamin E-deficient, and control rats. Cell viability, as measured by trypan blue exclusion, was comparable for all groups during the 5-h incubation. Freshly isolated hepatocytes had the same glutathione concentration regardless of diet group. During the incubation, however, the glutathione concentration in selenium-deficient hepatocytes rose to 1.4 times that in control hepatocytes. The selenium-deficient cells also released twice as much glutathione into the incubation medium as did the control cells. Total glutathione (intracellular plus extracellular) in the incubation flask increased from 47.7 +/- 8.9 to 152 +/- 16.5 nmol/10(6) selenium-deficient cells over 5 h compared with an increase from 46.7 +/- 7.1 to 92.0 +/- 17.4 nmol/10(6) control cells and from 47.7 +/- 11.7 to 79.5 +/- 24.9 nmol/10(6) vitamin E-deficient cells. This overall increase in glutathione concentration suggested that glutathione synthesis was accelerated by selenium deficiency. The activity of gamma-glutamylcysteine synthetase was twice as great in selenium-deficient liver supernatant (105,000 X g) as in vitamin E-deficient or control liver supernatant (105,000 X g). Hemoglobin-free perfused livers were used to determine the form of glutathione released and its route. Selenium-deficient livers released 4 times as much GSH into the caval perfusate as did control livers. Plasma glutathione concentration in selenium-deficient rats was found to be 2-fold that in control rats, suggesting that increased GSH synthesis and release is an in vivo phenomenon associated with selenium deficiency.  相似文献   

15.
The effects of temperature on reconstituted sarcoplasmic Ca-ATPase preparations from vitamin E-deficient dystrophic and control rabbits were studied. Delipidated Ca-ATPase from vitamin E-deficient sarcoplasmic reticulum (SR) reconstituted with lipid of control SR exhibited properties similar to preparations reconstituted with lipid of vitamin E-deficient SR, namely low Ca-ATPase activity and a linear Arrhenius plot of enzyme activity. On the other hand, delipidated control SR Ca-ATPase reconstituted with lipid of vitamin E-deficient SR showed a reduction in activity but retained the discontinuity in the Arrhenius plot. These results indicated that the altered property of sarcoplasmic Ca-ATPase from vitamin E-deficient dystrophic rabbit was associated with the protein and not the lipid component.  相似文献   

16.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

17.
The activity of the type II iodothyronine 5'-deiodinase enzyme in brown adipose tissue has been examined in rats-fed a selenium-deficient diet. Iodothyronine 5'-deiodinase activity was threefold lower in brown adipose tissue of deficient rats than in control animals. The activity of glutathione peroxidase, a biochemical index of selenium deficiency, was also greatly decreased in deficient animals. Cytochrome oxidase activity in brown fat was, however, unaltered by selenium deficiency. Acute exposure to cold (4 degrees C for 18 h) resulted in a substantial increase in iodothyronine 5'-deiodinase activity in brown adipose tissue of control rats, but the stimulatory effect of cold was attenuated in selenium-deficient animals. These results support the concept that the iodothyronine 5'-deiodinases are selenium-dependent enzymes, and indicate that the thermogenic response to cold may be impaired in selenium deficiency.  相似文献   

18.
19.
《Free radical research》2013,47(5-6):315-322
Effects of dietary vitamin E deficiency on the fatty acid compositions of total lipids and phospholipids were studied in several tissues of rats fed a vitamin E-deficient diet for 4, 6, and 9 months. No significant differences were observed between the vitamin E deficiency and controls except in the fatty acid profiles of liver total lipids. Triacylglycerol (TAG) accumulation was found in the liver of rats fed a vitamin E-deficient diet. The levels of TAG-palmitate and -oleate increased particularly in the liver from such animals. The fatty acid compositions of hepatic phospholipids were not affected by the diet. Increased TAG observed in the liver of rats fed a vitamin E-deficient diet was restored to normal when the diet was supplemented with 20 mg α-tocopheryl acetate/kg diet. These findings indicate that dietary vitamin E deficiency causes TAG accumulation in the liver and that the antioxidant, vitamin E, is capable of preventing free radical-induced liver injury.  相似文献   

20.
In four experiments performed to study the pathology of vitamin E-deficiency in pigs (Nafstad & Tollersrud 1970) serum enzyme determinations were carried out in order to obtain some information about the development of the deficiency syndrome. The enzymes determined were aspartate aminotransferase (AspAT = GOT), alanine aminotransferase (AlAT = GPT), isocitrate dehydrogenase (ICD), and lactate dehydrogenase (LDH). Blood samples were taken every second week during the experiments, which lasted for three to four months each and included a total number of 112 animals. At death or slaughter organs were removed in two experiments for determination of tissue homogenate transferase activity. A good correlation was shown to exist between the levels of serum enzyme activity and the frequency of pathological changes found at necropsy. Vitamin E-supplemented pigs showed enzyme values within normal ranges, whereas animals supplemented with selenium or amino acids and non-supplemented lots showed increased levels. To a certain extent differential diagnoses between the organs most affected could also be made on the basis of the enzyme values, though the complex nature of the deficiency syndrome in some cases rendered this more hypothetical. Gastric ulcers gave no elevation of serum enzyme activity. An inverse correlation was found between transferase activity in serum and tissue homogenates. Vitamin E-deficient pigs with high serum values yielded lower tissue enzyme activity than animals in the corresponding supplemented lots. Pigs fed the highest dietary protein levels showed the highest tissue transferase activity. This was most marked for liver homogenates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号