首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone (GH) counteracts insulin action on lipid and glucose metabolism. However, the sequence of molecular events leading to these changes is poorly understood. Insulin action is initiated by binding of the hormone to its cell surface receptor (IR). This event activates the intrinsic tyrosine kinase activity residing in the beta-subunit of the IR and leads to autophosphorylation of the cytoplasmic portion of the beta-subunit and further activation of its tyrosine kinase towards several intermediate proteins, including the family of IR substrates (IRS) and the Shc proteins. When tyrosine phosphorylated, these cellular substrates connect the IR with several downstream signaling molecules. One of them is the enzyme phosphatidylinositol (PI) 3-kinase. The insulin antagonistic action of GH is not a consequence of a direct interaction with the IR. Instead, long-term exposure to GH is, in general, associated with hyperinsulinemia, which leads to a reduction of IR levels and an impairment of its tyrosine kinase activity. The signals of GH and insulin may converge at post-receptor levels. The signaling pathway leading to activation of PI 3-kinase appears to be an important site of convergence between the signals of these two hormones and seems to be mediated principally by IRS-1. Rodent models of chronic GH excess have been useful tools to investigate the mechanism by which GH induces insulin resistance. Decreased IR, IRS-1, and IRS-2 tyrosyl phosphorylation in response to insulin was found in skeletal muscle, whereas a chronic activation of the IRS-PI 3-kinase pathway was found in liver. The induction of the expression of proteins that inhibit IR signaling such as suppressors of cytokine signaling (SOCS)-1 and -6 may also be involved in this alteration. Interestingly, the modulation of insulin signaling and action observed in states of GH excess, deficiency, or resistance seems to be relevant to the changes in longevity associated with those states.  相似文献   

2.
Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR) signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1), was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin’s effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin’s effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.  相似文献   

3.
The insulin receptor (IR) is a 320 kDa membrane receptor tyrosine kinase mediating the pleiotropic actions of insulin, leading to phosphorylation of several intracellular substrates including serine/threonine-protein kinase (AKT1), and IR autophosphorylation. Structural details of the IR have been recently revealed. A high-binding insulin site, L1 (Kd =2 nM), consists of two distant domains in the primary sequence of the IR. Our design simplified the L1 binding site and transformed it into a soluble insulin binder (sIB). The sIB, a 17 kDa protein, binds insulin with 38 nM affinity. The sIB competes with IR for insulin and reduces by more than 50% phosphorylation of AKT1 in HEK 293 T cells, with similar effects on IR autophosphorylation. The sIB represents a new tool for research of insulin binding and signaling properties.  相似文献   

4.
The tyrosine kinase activity of a chimeric insulin receptor composed of the extracellular domain of the human insulin receptor (IR) and the intracellular domain of the chicken IR was compared with wild-type human IR. The degrees of autophosphorylation, phosphorylation of IRS-1, and in vitro phosphorylation of an exogenous substrate after stimulation by human insulin were similar to that seen with the human IR. We conclude that the insulin resistance of chickens is not attributable to a lower level of intrinsic tyrosine kinase activity of IR.  相似文献   

5.
6.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

7.
While considerable research has examined diminished insulin responses within peripheral tissues, comparatively little has been done to examine the effects of this metabolic disruption upon the CNS. The present study employed biochemical and electrophysiological assays of acutely prepared brain slices to determine whether neural insulin resistance is a component of the metabolic syndrome observed within the fructose-fed (FF) hamster. The tyrosine phosphorylation levels of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in response to insulin were significantly reduced within FF hamsters. Also, insulin-mediated phosphorylation of both residues necessary for activation of the serine-threonine kinase Akt/PKB, a key effector of insulin signaling, was markedly decreased. Elevated levels of the protein tyrosine phosphatase 1B, which dephosphorylates the IR and IRS-1, were also observed within the cerebral cortex and hippocampus of FF hamsters. Examination of whether a nutritionally induced compromise of neural insulin signaling altered synaptic function revealed a significant attenuation of insulin-induced long-term depression, but no effect upon either paired-pulse facilitation or electrically induced long-term potentiation. Collectively, our results demonstrate, for the first time, that nutritionally induced insulin resistance significantly affects the neural insulin signaling pathway, and suggest that brain insulin resistance may contribute to cognitive impairment.  相似文献   

8.
In type 2 diabetes mellitus, impaired insulin signaling leads to hyperglycemia and other metabolic abnormalities. TLK19780, a non-peptide small molecule, is a new member of a novel class of anti-diabetic agents that function as activators of the insulin receptor (IR) beta-subunit tyrosine kinase. In HTC-IR cells, 20 microm TLK19780 enhanced maximal insulin-stimulated IR autophosphorylation 2-fold and increased insulin sensitivity 2-3-fold. In contrast, TLK19780 did not potentiate the action of insulin-like growth factor-1, indicating the selectivity of TLK19780 toward the IR. The predominant effect of TLK19780 was to increase the number of IR that underwent autophosphorylation. Kinetic studies indicated that TLK19780 acted very rapidly, with a maximal effect observed 2 min after addition to insulin-stimulated cells. In 3T3-L1 adipocytes, 5 microm TLK19780 enhanced insulin-stimulated glucose transport, increasing both the sensitivity and maximal responsiveness to insulin. These studies indicate that at low micromolar levels small IR activator molecules can enhance insulin action in various cultured cells and suggest that this effect is mediated by increasing the number of IR that are tyrosine-phosphorylated in response to insulin. These studies suggest that these types of molecules could be developed to treat type 2 diabetes and other clinical conditions associated with insulin resistance.  相似文献   

9.
The receptors for insulin (IR) and epidermal growth factor (EGFR) are members of the tyrosine kinase receptor (TKR) family. Despite homology of their cytosolic TK domains, both receptors induce different cellular responses. Tyrosine phosphorylation of insulin receptor substrate (IRS) molecules is a specific IR post-receptor response. The EGFR specifically activates phospholipase C-gamma1 (PLC-gamma1). Recruitment of substrate molecules with Src homology 2 (SH2) domains or phosphotyrosine binding (PTB) domains to phosphotyrosines in the receptor is one of the factors creating substrate specificity. In addition, it has been shown that the TK domains of the IR and EGFR show preferences to phosphorylate distinct peptides in vitro, suggesting additional mechanisms of substrate recognition. We have examined to what extent the substrate preference of the TK domain contributes to the specificity of the receptor in vivo. For this purpose we determined whether the IR TK domain, in situ, is able to tyrosine-phosphorylate substrates normally used by the EGFR. A chimaeric receptor, consisting of an EGFR in which the juxtamembrane and tyrosine kinase domains were exchanged by their IR counterparts, was expressed in CHO-09 cells lacking endogenous EGFR. This receptor was found to activate PLC-gamma1, indicating that the IR TK domain, in situ, is able to tyrosine phosphorylate substrates normally used by the EGFR. These findings suggest that the IR TK domain, in situ, has a low specificity for selection and phosphorylation of non-cognate substrates.  相似文献   

10.
Insulin resistance in polycystic ovary syndrome (PCOS) is due to a postbinding defect in signaling that persists in cultured skin fibroblasts and is associated with constitutive serine phosphorylation of the insulin receptor (IR). Cultured skeletal muscle from obese women with PCOS and age- and body mass index-matched control women (n = 10/group) was studied to determine whether signaling defects observed in this tissue in vivo were intrinsic or acquired. Basal and insulin-stimulated glucose transport and GLUT1 abundance were significantly increased in cultured myotubes from women with PCOS. Neither IR beta-subunit abundance and tyrosine autophosphorylation nor insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity differed in the two groups. However, IRS-1 protein abundance was significantly increased in PCOS, resulting in significantly decreased PI 3-kinase activity when normalized for IRS-1. Phosphorylation of IRS-1 on Ser312, a key regulatory site, was significantly increased in PCOS, which may have contributed to this signaling defect. Insulin signaling via IRS-2 was also decreased in myotubes from women with PCOS. In summary, decreased insulin-stimulated glucose uptake in PCOS skeletal muscle in vivo is an acquired defect. Nevertheless, there are intrinsic abnormalities in glucose transport and insulin signaling in myotubes from affected women, including increased phosphorylation of IRS-1 Ser312, that may confer increased susceptibility to insulin resistance-inducing factors in the in vivo environment. These abnormalities differ from those reported in other insulin resistant states consistent with the hypothesis that PCOS is a genetically unique disorder conferring an increased risk for type 2 diabetes.  相似文献   

11.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

12.
Both hyperglycemia and tumor necrosis factor alpha (TNFalpha) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H(2)O(2) dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 microM H(2)O(2) for 5 min inhibits insulin-induced IR tyrosine phosphorylation to 8%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor G?6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H(2)O(2) is involved in hyperglycemia- and/or TNFalpha-induced insulin resistance, we preincubated the cells with the H(2)O(2) scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFalpha, or 500 microM H(2)O(2), respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H(2)O(2) and TNFalpha on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFalpha.  相似文献   

13.
Reactive Oxygen Species Enhance Insulin Sensitivity   总被引:1,自引:0,他引:1  
Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high-fat-diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the antioxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo.  相似文献   

14.
15.
TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.  相似文献   

16.
Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA) affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS) production. Western blot analysis was used to examine the levels of insulin receptor (IR), phosphorylated insulin receptor substrate 1 (IRS1, Ser307) and phospho-Akt (Ser473). We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307) and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307) response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307) and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.  相似文献   

17.
The proteolytic cleavage of a precursor protein into alpha- and beta-subunits by furin is required to form functional insulin receptor (IR). In this study, we examined if IR undergoes the additional presenilin (PS)/gamma-secretase-dependent processing. In cells treated with gamma-secretase inhibitors or expressing the dominant-negative PS1 variant led to the accumulation of an endogenous IR C-terminal fragment. In the presence of proteasome inhibitors, we detected a PS/gamma-secretase cleavage product of the IR, termed the IR intracellular domain (ICD). Cellular fractionation and confocal microscopy analyses showed that the IR-ICD is predominantly detected in the nucleus. These data indicate that IR is a tyrosine kinase receptor, which undergoes PS/gamma-secretase-dependent processing. We also show that the autophosphorylation levels of the IR beta-subunit upon insulin stimulation were decreased by the inactivation of PS/gamma-secretase, raising the possibility that the PS/gamma-secretase proteolysis of IR may play a modulatory role in insulin signaling.  相似文献   

18.
Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.  相似文献   

19.
Unlike prototypical receptor tyrosine kinases (RTKs), which are single-chain polypeptides, the insulin receptor (InsR) is a preformed, covalently linked tetramer with two extracellular α subunits and two membrane-spanning, tyrosine kinase-containing β subunits. A single molecule of insulin binds asymmetrically to the ectodomain, triggering a conformational change that is transmitted to the cytoplasmic kinase domains, which facilitates their trans-phosphorylation. As in prototypical RTKs, tyrosine phosphorylation in the juxtamembrane region of InsR creates recruitment sites for downstream signaling proteins (IRS [InsR substrate] proteins, Shc) containing a phosphotyrosine-binding (PTB) domain, and tyrosine phosphorylation in the kinase activation loop stimulates InsR’s catalytic activity. For InsR, phosphorylation of the activation loop, which contains three tyrosine residues, also creates docking sites for adaptor proteins (Grb10/14, SH2B2) that possess specialized Src homology-2 (SH2) domains, which are dimeric and engage two phosphotyrosines in the activation loop.Insulin is a highly potent anabolic hormone that is critical for tissue development and for glucose homeostasis (Taniguchi et al. 2006). Released from the β cells of the pancreas, insulin regulates glucose output from the liver and glucose uptake into (primarily) skeletal muscle and adipose tissue. In addition, insulin promotes the synthesis and storage of carbohydrates, lipids, and protein. Insulin’s actions are mediated by the insulin receptor (InsR), a plasma membrane-resident glycoprotein and member of the receptor tyrosine kinase (RTK) family. Other members of the InsR subfamily of RTKs include the insulinlike growth factor-1 receptor (IGF1R) and insulin receptor-related receptor, the latter of which has no known ligand. As an RTK, InsR is ligand-activated through mechanisms that are both prototypical and atypical of RTKs. These mechanisms will be the focus of this article.  相似文献   

20.

Background

The insulin receptor is localized in caveolae and is dependent on caveolae or cholesterol for signaling in adipocytes. When stimulated with insulin, the receptor is internalized.

Methodology/Principal Findings

We examined primary rat adipocytes by subcellular fractionation to examine if the insulin receptor was internalized in a caveolae-mediated process. Insulin induced a rapid, t1/2<3 min, endocytosis of the insulin receptor in parallel with receptor tyrosine autophosphorylation. Concomitantly, caveolin-1 was phosphorylated at tyrosine(14) and endocytosed. Vanadate increased the phosphorylation of caveolin-1 without affecting insulin receptor phosphorylation or endocytosis. Immunocapture of endosomal vesicles with antibodies against the insulin receptor co-captured caveolin-1 and immunocapture with antibodies against tyrosine(14)-phosphorylated caveolin-1 co-captured the insulin receptor, demonstrating that the insulin receptor was endocytosed together with tyrosine(14)-phosphorylated caveolin-1. By immunogold electron microscopy the insulin receptor and caveolin-1 were colocalized in endosome vesicles that resembled caveosomes. Clathrin was not endocytosed with the insulin receptor and the inhibitor of clathrin-coated pit-mediated endocytosis, chlorpromazine, did not inhibit internalization of the insulin receptor, while transferrin receptor internalization was inhibited.

Conclusion

It is concluded that in response to insulin stimulation the autophosphorylated insulin receptor in primary adipocytes is rapidly endocytosed in a caveolae-mediated process, involving tyrosine phosphorylation of caveolin-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号