首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutation R403stop was found in an individual with mut0 methylmalonic aciduria (MMA) which resulted from a single base change of C→T in exon 6 of the methylmalonyl-CoA mutase gene (producing a TGA stop codon). In order to accurately model the human MMA disorder we introduced this mutation onto the human methylmalonyl-CoA mutase locus of a bacterial artificial chromosome. A mouse model was developed using this construct.The transgene was found to be intact in the mouse model, with 7 copies integrated at a single site in chromosome 3. The phenotype of the hemizygous mouse was unchanged until crossed against a methylmalonyl-CoA mutase knockout mouse. Pups with no endogenous mouse methylmalonyl-CoA mutase and one copy of the transgene became ill and died within 24 hours. This severe phenotype could be partially rescued by the addition of a transgene carrying two copies of the normal human methylmalonyl-CoA mutase locus. The “humanized” mice were smaller than control litter mates and had high levels of methylmalonic acid in their blood and tissues.This new transgenic MMA stop codon model mimics (at both the phenotypic and genotypic levels) the key features of the human MMA disorder. It will allow the trialing of pharmacological and, cell and gene therapies for the treatment of MMA and other human metabolic disorders caused by stop codon mutations.  相似文献   

2.
Deficiencies in two subunits of the succinyl-coenzyme A synthetase (SCS) have been involved in patients with encephalomyopathy and mild methylmalonic aciduria (MMA). In this study, we described three new SUCLG1 patients and performed a meta-analysis of the literature. Our report enlarges the phenotypic spectrum of SUCLG1 mutations and confirms that a characteristic metabolic profile (presence of MMA and C4-DC carnitine in urines) and basal ganglia MRI lesions are the hallmarks of SCS defects. As mitochondrial DNA depletion in muscle is not a constant finding in SUCLG1 patients, this may suggest that diagnosis should not be based on it, but also that alternative physiopathological mechanisms may be considered to explain the combined respiratory chain deficiency observed in SCS patients.  相似文献   

3.
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.  相似文献   

4.
Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.  相似文献   

5.
Accumulation of methylmalonic acid (MMA) in tissues and biological fluids is the biochemical hallmark of methylmalonic aciduria. Affected patients present renal failure and severe neurological findings. Considering that the underlying pathomechanisms of tissue damage are not yet understood, in the present work we assessed the in vivo e in vitro effects of MMA on DNA damage in brain and kidney, as well as on p53 and caspase 3 levels, in the presence or absence of gentamicin (acute renal failure model). For in vitro studies, tissue prisms were incubated in the presence of different concentrations of MMA and/or gentamicin for one hour. For in vivo studies, animals received a single injection of gentamicin (70 mg/kg) and/or three injections of MMA (1.67 μmol/g; 11 h interval between injections). The animals were killed 1 h after the last MMA injection. Controls received saline in the same volumes. DNA damage was analyzed by the comet assay. We found that MMA and gentamicin alone or combined in vitro increased DNA damage in cerebral cortex and kidney of rats. Furthermore, MMA administration increased DNA damage in both brain and kidney. Gentamicin per se induced DNA damage only in kidney, and the association of MMA plus gentamicin also caused DNA damage in cerebral cortex and kidney. On the other hand, p53 and caspase 3 levels were not altered by the administration of MMA and/or gentamicin. Our findings provide evidence that DNA damage may contribute to the neurological and renal damage found in patients affected by methylmalonic aciduria.  相似文献   

6.
Susceptibility to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) varies greatly among patients in sepsis/septic shock. The genetic and biochemical reasons for the difference are not fully understood. G protein coupled receptor family C group 5 member A (GPRC5A), a retinoic acid target gene, is predominately expressed in the bronchioalveolar epithelium of lung. We hypothesized that Gprc5a is important in controlling the susceptibility to ALI or ARDS. In this study, we examined the susceptibility of wild-type and Gprc5a-knockout (ko) mice to induced ALI. Administration of endotoxin LPS induced an increased pulmonary edema and injury in Gprc5a-ko mice, compared to wild-type counterparts. Consistently, LPS administration induced higher levels of inflammatory cytokines (IL-1β and TNFα) and chemokine (KC) in Gprc5a-ko mouse lungs than in wild-type. The enhanced pulmonary inflammatory responses were associated with dysregulated NF-κB signaling in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs. Importantly, selective inhibition of NF-κB through expression of the super-repressor IκBα in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs alleviated the LPS-induced pulmonary injury, and inflammatory response. Thus, Gprc5a is critical for lung homeostasis, and Gprc5a deficiency confers the susceptibility to endotoxin-induced pulmonary edema and injury, mainly through NF-κB signaling in bronchioalveolar epithelium of lung.  相似文献   

7.
SEC23B is one of two vertebrate paralogs of SEC23, a key component of the coat protein complex II vesicles. Complete deficiency of SEC23B in mice leads to perinatal death caused by massive degeneration of professional secretory tissues. However, functions of SEC23B in postnatal mice and outside professional secretory tissues are unclear. In this study, we generated a Sec23b KO mouse and a knockin (KI) mouse with the E109K mutation, the most common human mutation in congenital dyserythropoietic anemia type II patients. We found that E109K mutation led to decreases in SEC23B levels and protein mislocalization. However, Sec23bki/ki mice showed no obvious abnormalities. Sec23b hemizygosity (Sec23bki/ko) was partially lethal, with only half of expected hemizygous mice surviving past weaning. Surviving Sec23bki/ko mice exhibited exocrine insufficiency, increased endoplasmic reticulum stress and apoptosis in the pancreas, and phenotypes consistent with chronic pancreatitis. Sec23bki/ko mice had mild to moderate anemia without other typical congenital dyserythropoietic anemia type II features, likely resulting from exocrine insufficiency. Moreover, Sec23bki/ko mice exhibited severe growth restriction accompanied by growth hormone (GH) insensitivity, reminiscent of Laron syndrome. Growth restriction is not associated with hepatocyte-specific Sec23b deletion, suggesting a nonliver origin of this phenotype. We propose that inflammation associated with chronic pancreatic deficiency may explain GH insensitivity in Sec23bki/ko mice. Our results reveal a genotype–phenotype correlation in SEC23B deficiency and indicate that pancreatic acinar is most sensitive to SEC23B deficiency in adult mice. The Sec23bki/ko mice provide a novel model of chronic pancreatitis and growth retardation with GH insensitivity.  相似文献   

8.
Human methylmalonyl-CoA epimerase (MCEE) catalyzes the interconversion of d-methylmalonyl-CoA and l-methylmalonyl-CoA in propionate catabolism. Autosomal recessive pathogenic variations in MCEE reportedly cause methylmalonic aciduria (MMAuria) in eleven patients. We investigated a cohort of 150 individuals suffering from MMAuria of unknown origin, identifying ten new patients with pathogenic variations in MCEE. Nine patients were homozygous for the known nonsense variation p.Arg47* (c.139C > T), and one for the novel missense variation p.Ile53Arg (c.158T > G). To understand better the molecular basis of MCEE deficiency, we mapped p.Ile53Arg, and two previously described pathogenic variations p.Lys60Gln and p.Arg143Cys, onto our 1.8 Å structure of wild-type (wt) human MCEE. This revealed potential dimeric assembly disruption by p.Ile53Arg, but no clear defects from p.Lys60Gln or p.Arg143Cys. We solved the structure of MCEE-Arg143Cys to 1.9 Å and found significant disruption of two important loop structures, potentially impacting surface features as well as the active-site pocket. Functional analysis of MCEE-Ile53Arg expressed in a bacterial recombinant system as well as patient-derived fibroblasts revealed nearly undetectable soluble protein levels, defective globular protein behavior, and using a newly developed assay, lack of enzymatic activity - consistent with misfolded protein. By contrast, soluble protein levels, unfolding characteristics and activity of MCEE-Lys60Gln were comparable to wt, leaving unclear how this variation may cause disease. MCEE-Arg143Cys was detectable at comparable levels to wt MCEE, but had slightly altered unfolding kinetics and greatly reduced activity. These studies reveal ten new patients with MCEE deficiency and rationalize misfolding and loss of activity as molecular defects in MCEE-type MMAuria.  相似文献   

9.
Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated reduction in circulating leptin, double mutant mice deficient in both leptin (ob/ob) and DBH (DBL MUT) were generated. Upon fasting, control and ob/ob mice entered torpor as assessed by telemetric core Tb acquisition. While fasting failed to induce torpor in Dbh −/− mice, leptin deficiency bypassed the requirement for NE, as DBL MUT mice readily entered torpor upon fasting. These data indicate that sympathetic activation of white fat and suppression of leptin is required for the onset of torpor in the mouse. Emergence from torpor was severely retarded in DBL MUT mice, revealing a novel, leptin-independent role for NE in torpor recovery. This phenotype was mimicked by administration of a β3 adrenergic receptor antagonist to control mice during a torpor bout. Hence, NE signaling via β3 adrenergic receptors presumably in brown fat is the first neurotransmitter-receptor system identified that is required for normal recovery from torpor.  相似文献   

10.
HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson’s disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30–40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P) day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.  相似文献   

11.
Calpain has been implicated in acute myocardial injury after myocardial infarction (MI). However, the causal relationship between calpain and post-MI myocardial remodeling has not been fully understood. This study examined whether deletion of Capn4, essential for calpain-1 and calpain-2 activities, reduces myocardial remodeling and dysfunction following MI, and if yes, whether these effects of Capn4 deletion are associated with NF-κB signaling and inflammatory responses in the MI heart. A novel mouse model with cardiomyocyte-specific deletion of Capn4 (Capn4-ko) was employed. MI was induced by left coronary artery ligation. Deficiency of Capn4 dramatically reduced the protein levels and activities of calpain-1 and calpain-2 in the Capn4-ko heart. In vivo cardiac function was relatively improved in Capn4-ko mice at 7 and 30 days after MI when compared with their wild-type littermates. Deletion of Capn4 reduced apoptosis, limited infarct expansion, prevented left ventricle dilation, and reduced mortality in Capn4-ko mice. Furthermore, cardiomyocyte cross-sectional areas and myocardial collagen deposition were significantly attenuated in Capn4-ko mice, which were accompanied by down-regulation of hypertrophic genes and profibrotic genes. These effects of Capn4 knock-out correlated with restoration of IκB protein and inhibition of NF-κB activation, leading to suppression of proinflammatory cytokine expression and inflammatory cell infiltration in the Capn4-ko heart after MI. In conclusion, deficiency of Capn4 reduces adverse myocardial remodeling and myocardial dysfunction after MI. These effects of Capn4 deletion may be mediated through prevention of IκB degradation and NF-κB activation, resulting in inhibition of inflammatory responses.  相似文献   

12.
Methylmalonic aciduria cblB type (MMA cblB type, MMAB OMIM #251110), caused by a deficiency in the enzyme ATP:cob(I)alamin adenosyltransferase (ATR, E.C_2. 5.1.17), is a severe metabolic disorder with a poor prognosis despite treatment. We recently described the potential therapeutic use of pharmacological chaperones (PCs) after increasing the residual activity of ATR in patient-derived fibroblasts. The present work reports the successful generation of hepatocyte-like cells (HLCs) differentiated from two healthy and two MMAB induced pluripotent stem cell (iPSC) lines, and the use of this platform for testing the effects of PCs. The MMAB cells produced little ATR, showed reduced residual ATR activity, and had higher concentrations of methylmalonic acid compared to healthy HLCs. Differential proteome analysis revealed the two MMAB HCLs to show reproducible differentiation, but this was not so for the healthy HLCs. Interestingly, PC treatment in combination with vitamin B12 increased the amount of ATR available, and subsequently ATR activity, in both MMAB HLCs. More importantly, the treatment significantly reduced the methylmalonic acid content of both. In summary, the HLC model would appear to be an excellent candidate for the pharmacological testing of the described PCs, for analyzing the effects of new drugs, and investigating the repurposing of older drugs, before testing in animal models.  相似文献   

13.
Methylmalonic aciduria is a human autosomal recessive disorder of organic acid metabolism resulting from a functional defect in the activity of the enzyme methylmalonyl-CoA mutase. Based upon the homology of the human mutase locus with the mouse locus, we have chosen to disrupt the mouse mutase locus within the critical CoA binding domain using gene-targeting techniques to create a mouse model of methylmalonic aciduria. The phenotype of homozygous knock-out mice (mut-/-) is one of early neonatal lethality. Mice appear phenotypically normal at birth and are indistinguishable from littermates. By 15 h of age, they develop reduced movement and suckle less. This is followed by the development of abnormal breathing, and all of the mice with a null phenotype die by 24 h of age. Urinary levels of methylmalonic and methylcitric acids are grossly increased. Measurement of acylcarnitines in blood shows elevation of propionylcarnitine with no change in the levels of acetylcarnitine and free carnitine. Incorporation of [14C]propionate in primary fibroblast cultures from mut-/- mice is reduced to approximately 6% of normal level, whereas there is no detectable synthesis of mut mRNA in the liver. This is the first mouse model that recapitulates the key phenotypic features of mut0 methylmalonic aciduria.  相似文献   

14.
Methylene blue (MB) is a thiazine dye with cationic and lipophilic properties that acts as an electron transfer mediator in the mitochondria. Due to this metabolic improving activity and free radicals scavenging effects, MB has been used in the treatment of methemoglobinemia and ifosfamide-induced encephalopathy. Considering that methylmalonic acidemia consists of a group of inherited metabolic disorders biochemically characterized by impaired mitochondrial oxidative metabolism and reactive species production, we decided to investigate whether MB, protects against the behavioral and neurochemical alterations elicited by the intrastriatal injection of methylmalonate (MMA). In the present study we showed that intrastriatal injection of MB (0.015-1.5nmol/0.5microl) protected against seizures (evidenced by electrographic recording), protein carbonylation and Na(+),K(+)-ATPase inhibition ex vivo induced by MMA (4.5micromol/1.5microl). Furthermore, we investigated whether convulsions elicited by intrastriatal MMA administration are accompanied by striatal protein carbonyl content increase and changes in Na(+),K(+)-ATPase activity in rat striatum. The effect of MB (0.015-1.5nmol/0.5microl) and MMA (4.5micromol/0.5microl) on striatal NO(x) (NO(2) plus NO(3)) content was also evaluated. Statistical analysis revealed that the MMA-induced NO(x) content increase was attenuated by intrastriatal injection of MB and the duration of convulsive episodes correlated with Na(+),K(+)-ATPase inhibition, but not with MMA-induced total protein carbonylation. In view of that MB decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters, the authors suggest that MB may be of value to attenuate neurological deficits of methylmalonic acidemic patients.  相似文献   

15.
Achieving long-term expression of a therapeutic gene in a given hematopoietic lineage remains an important goal of gene therapy. Congenital erythropoietic porphyria (CEP) is a severe autosomal-recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We used a recently obtained murine model to check the feasibility of gene therapy in this disease. Lentivirus-mediated transfer of the human UROS cDNA into hematopoietic stem cells (HSCs) from Urosmut248 mice resulted in a complete and long-term enzymatic, metabolic, and phenotypic correction of the disease, favored by a survival advantage of corrected red blood cells. These results demonstrate that the cure of this mouse model of CEP at a moderate transduction level supports the proof of concept of a gene therapy in this disease by transplantation of genetically modified hematopoietic stem cells.  相似文献   

16.
17.
Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.  相似文献   

18.
Isolated methylmalonic acidemia (MMA) is a rare metabolic disease due to the deficient activity of L-methylmalonyl-CoA mutase (MCM). This mitochondrial enzyme converts L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (Adocbl) as cofactor. Isolated MMA is subdivided into five forms: mut MMA associated with MCM deficiency, three different defects related to mitochondrial Adocbl formation (cblA, cblB, and cblH), and cblD variant 2. We performed proteomic analysis on mitochondria from an individual with cblH/cblD disorder using 2-D DIGE to identify differentially expressed proteins in this disease. Comparative analysis of control/patient mitochondrial proteome allowed us to identify differential expression of 10 proteins. The most notable groups included proteins involved in apoptosis (cytochrome c), oxidative stress (manganese superoxide dismutase) and cell metabolism (succinyl-CoA ligase (GDP forming) and mitochondrial glycerophosphate dehydrogenase). Immunoblot analysis further validated 2-D DIGE results of two of these proteins in multiple MMA patients, suggesting that the differences in expression are a general effect in this disorder. It is feasible that the differential proteins identified in this study have a biological significance and might be related to the pathophysiology of MMA.  相似文献   

19.
Two cases of benign methylmalonic aciduria (MMAuria) were found among 9780 neonatal screenings using the previously described screening method consisting of urease digestion, ethanol deproteinization and gas chromatography-mass spectrometry. Combining this screening method with the stable isotope dilution technique showed very specific and sensitive measurements of methylmalonic acid in urine. The concentrations of urinary methylmalonic acid were measured at several ages. The levels of urinary methylmalonic acid in two patients varied from 0.27 to 3.04 mol/mol creatinine (control<0.01 mol/mol creatinine). Methylcitrate and homocystine were not increased in the patient's urine or blood. Blood propionylcarnitine was also at normal levels. The urinary methylmalonate excretions were decreased to the levels of about 50% of the start point after vitamin B12 treatment in one patient, but the other patient showed no change. No clinical abnormalities were observed during these periods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号