首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The study of working memory often utilizes a delayed matching to sample paradigm (DMS). Typically in the matching condition, the test and sample stimuli are identical, raising the possible confound of retinotopic projections for the matching stimuli in contrast to the non-matching stimuli. In the present study, 65 healthy subjects performed a modified delayed matching to sample task while monitoring their ERP waveforms. The stimuli consisted of 60 different sample stimuli (S1) and 60 different test stimuli (S2). Half of the S2s were complementary to the sample stimuli (Fit), the other half of the S2s were not complementary (Nonfit). After S2, the subjects pressed one of the buttons to indicate whether the test stimulus fits the sample stimulus. Our statistical results indicated that the ERPs to sample stimuli differed from the ERPs to test stimuli from 200 ms poststimulus to the end of the recording epoch. The ERPs to fitting stimuli were significantly different from those to non-fitting stimuli from 200 to 400 ms poststimulus. The ERP patterns in the present study may reflect ERP mnemonic effect for working memory. Our results ruled out the retinotopic confound as a potential mediator variable, and are in agreement with other animal or human neurophysiological studies on memory.  相似文献   

2.
Event-related potentials (ERP) were recorded in a recognition memory task in 5 healthy subjects and an amnesic patient. A list of high-imagery words with low probability in everyday language was presented visually for 200 ms each. A second list, consisting of 50% previously presented (`old') words and 50% `new' words was presented immediately after the first list. Old/new distinction was determined by the subject's motor response. For each subject single trial analysis of ERPs was performed. In each healthy subjects, correct old/new distinction was associated with significant ERP differences from 500 to 900 ms after stimulus onset. It was, therefore, assumed that task and recording procedures were appropriate for the study of ERPs with recognition memory. The main finding is a dissociation between brain activity and behaviour with old/new distinction in the patient with amnesic syndrome. Frequently, the patient incorrectly classified previously shown words (`old' words) to be presented for the first time (`new'). But ERP showed that brain processing of `old' words which had incorrectly been classified to be `new' is different from correctly classified new words. ERP differences were significant between 900 and 1200 ms after stimulus presentation. These data indicate preserved memory functions which are not assessed at the behavioural level in the memory recognition task.  相似文献   

3.
Ten healthy volunteers were submitted to an auditory oddball event related potentials (ERP) paradigm. Single trial 500 ms poststimulus ERPs (Pz, Cz, Fz--linked earlobes) along with the correspondent 1000 ms prestimulus EEG (O1-Cz) were stored. EEG epochs were submitted to spectral analysis and a slow wave index (SWI = delta + theta/total) was computed. Three selective ERP averages corresponding to low, medium and high SWI were computed. N2 latency was longer and P3a amplitude was lower in high SWI averages as compared to low SWI averages.  相似文献   

4.
We have studied event-related potentials (ERPs) during a visual paired association task with delayed discrimination in 10 normal right-handed subjects. After subjects completely memorized 4 pairs of figures during a learning period, they were presented with each cue (S1) and asked to judge whether the following figure (S2) formed one of the memorized pairs or not. A choice reaction task with delay was used for control in an attempt to identify brain activity specifically related to memory function. ERPs were recorded from 21 scalp electrodes and those occurring between the S1 and S2 presentation were analyzed. Two ERP components associated with memory function were identified in the difference waveform between the responses in the paired association task and those in the choice reaction task. One was a posterior positive component which appeared between 390 ms and 1100 ms after the S1 presentation and the other was a sustained frontal negative component which began at about 1100 ms after S1 and ended just before the S2 presentation. Both potentials were distributed predominantly on the scalp overlying the left hemisphere. It is postulated that the early posterior positive component may reflect retrieval of information from association memory, whereas the late frontal negativity may reflect retention of information in working memory.  相似文献   

5.
Delayed striate cortical activation during spatial attention   总被引:12,自引:0,他引:12  
Recordings of event-related potentials (ERPs) and event-related magnetic fields (ERMFs) were combined with functional magnetic resonance imaging (fMRI) to study visual cortical activity in humans during spatial attention. While subjects attended selectively to stimulus arrays in one visual field, fMRI revealed stimulus-related activations in the contralateral primary visual cortex and in multiple extrastriate areas. ERP and ERMF recordings showed that attention did not affect the initial evoked response at 60-90 ms poststimulus that was localized to primary cortex, but a similarly localized late response at 140-250 ms was enhanced to attended stimuli. These findings provide evidence that the primary visual cortex participates in the selective processing of attended stimuli by means of delayed feedback from higher visual-cortical areas.  相似文献   

6.
In the present study, the component structure of auditory event-related potentials (ERP) was studied in children of 7–9 years old by presenting stimuli with different interstimulus intervals (ISI). A short-term auditory sensory memory, as reflected by ISI effects on ERPs, was also studied. Auditory ERPs were recorded to brief unattended 1000 Hz frequent, `standard' and 1100 Hz rare, `deviant' (probability 0.1) tone stimuli with ISIs of 350, 700 and 1400 ms (in separate blocks). With the 350 ms-ISI, the ERP waveform to the standard stimulus consisted of P100-N250 peaks. With the two longer ISIs, in addition, the frontocentral N160 and N460 peaks were observed. Results suggested that N160, found with the longer ISIs, is a correlate of the adult auditory N1. In difference waves, obtained by subtracting ERP to standard stimuli from ERP to deviant stimuli, two negativities were revealed. The first was the mismatch negativity (MMN), which is elicited by any discriminable change in repetitive auditory input. The MMN data suggested that neural traces of auditory sensory memory lasted for at least 1400 ms, probably considerably longer, as no MMN attenuation was found across the ISIs used. The second, later negativity was similar to MMN in all aspects, except for the scalp distribution, which was posterior to that of the MMN.  相似文献   

7.
Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory.  相似文献   

8.
The P300 (P3) event-related brain potential (ERP) was elicited with a passive tone sequence paradigm and evaluated in 2 studies. Experiment 1 compared ERPs from the passive procedure with those from an active discrimination (oddball) task. The passive sequence paradigm yielded P3 wave forms remarkably similar to those obtained from the active task since both demonstrated central-parietal maximum scalp distributions and virtually identical peak latencies. No differences between tasks were found when ERPs were elicited with subject's eyes open or closed. Experiment 2 compared ERPs from the passive sequence paradigm obtained when subjects were attempting to solve a word puzzle with those from a simple ignore condition. The puzzle-solving secondary task produced a decrease in P3 amplitude relative to the ignore condition, although P3 peak latency was unaffected. These results suggest that the passive sequence paradigm may be a useful and reliable means of eliciting the P3 ERP in subject populations or experimental situations in which an active discrimination task cannot be performed.  相似文献   

9.
The effect of nonsemantic context on the perception of simple nonverbal visual stimuli has been studied in ten healthy volunteers by the event-related potential (ERP) method. The nonsemantic context was specified by the formation of a memory trace of a test visual stimulus via its repeated presentation without any instruction except gaze fixation. Then, this stimulus randomly alternated with control stimuli that did not form memory traces before their presentation. It has been found that an ERP in the interval 260–340 ms after presentation of a simple nonverbal stimulus significantly differs from the control ERPs. The results suggest that some stages of the processing of visual stimuli may be modified by nonsemantic context.  相似文献   

10.
Previous studies sought to test for the existence of a “cheater-detection module” by testing for enhanced memory for the faces of cheaters, but past results have been inconclusive. Here, we present four experiments showing that old–new discrimination was not affected by whether a face was associated with a history of cheating, trustworthy or irrelevant behavior. In contrast, source memory for faces associated with a history of cheating (i.e., memory for the cheating context in which the face was encountered) was consistently better than source memory for other types of faces. This pattern held under a variety of conditions, including different types of judgments participants made about the stimulus persons (attractiveness in Experiment 1; likeability in Experiments 2–4), different retention intervals (a few minutes in Experiments 1, 2 and 4; 1 week in Experiment 3), whether the behaviors were exceptional or ordinary (Experiments 1–3) and whether the social status of the characters was low or high (Experiment 4). Given no differences in old–new discrimination, enhanced source memory for faces of cheaters may be useful for avoiding cheaters in future interactions.  相似文献   

11.
Behavioral studies of spoken word memory have shown that context congruency facilitates both word and source recognition, though the level at which context exerts its influence remains equivocal. We measured event-related potentials (ERPs) while participants performed both types of recognition task with words spoken in four voices. Two voice parameters (i.e., gender and accent) varied between speakers, with the possibility that none, one or two of these parameters was congruent between study and test. Results indicated that reinstating the study voice at test facilitated both word and source recognition, compared to similar or no context congruency at test. Behavioral effects were paralleled by two ERP modulations. First, in the word recognition test, the left parietal old/new effect showed a positive deflection reflective of context congruency between study and test words. Namely, the same speaker condition provided the most positive deflection of all correctly identified old words. In the source recognition test, a right frontal positivity was found for the same speaker condition compared to the different speaker conditions, regardless of response success. Taken together, the results of this study suggest that the benefit of context congruency is reflected behaviorally and in ERP modulations traditionally associated with recognition memory.  相似文献   

12.
Much evidence indicates that recognition memory involves two separable processes, recollection and familiarity discrimination, with familiarity discrimination being dependent on the perirhinal cortex of the temporal lobe. Here, we describe a new neural network model designed to mimic the response patterns of perirhinal neurons that signal information concerning the novelty or familiarity of stimuli. The model achieves very fast and accurate familiarity discrimination while employing biologically plausible parameters and Hebbian learning rules. The fact that the activity patterns of the model's simulated neurons are closely similar to those of neurons recorded from the primate perirhinal cortex indicates that this brain region could discriminate familiarity using principles akin to those of the model. If so, the capacity of the model establishes that the perirhinal cortex alone may discriminate the familiarity of many more stimuli than current neural network models indicate could be recalled (recollected) by all the remaining areas of the cerebral cortex. This efficiency and speed of detecting novelty provides an evolutionary advantage, thereby providing a reason for the existence of a familiarity discrimination network in addition to networks used for recollection.  相似文献   

13.
Recording of event-related potentials (ERPs) was used to study the brain mechanisms of shifting the strategy of recognition of the global and local levels of a hierarchical image by adult subjects. A shift in the strategy of visual recognition results in substantial changes in ERP parameters in the caudal and frontocentral cortical areas. The activation effect of the switchover from one recognition strategy to another is associated with an increase in the amplitude of early ERP components (C1, P100, and N150) of the caudal cortical areas. Changes in the late ERP components associated with processing of significant information features during the shift in the recognition strategy are observed in the frontal areas within the interval 388–579 ms, with the amplitude of components N300 and N400 increasing.  相似文献   

14.
Declarative memory permits an organism to recognize stimuli that have been previously encountered, discriminating them from those that are novel. One basis for recognition is item memory strength, which may support the perception of stimulus familiarity. Though the medial temporal lobes are known to be critical for declarative memory, at present the neural mechanisms supporting perceived differences in memory strength remain poorly specified. Here, functional MRI (fMRI) and anatomically constrained magnetoencephalography (MEG) indexed correlates of graded memory strength in the human brain, focusing on medial temporal cortex. fMRI revealed a decrease in medial temporal cortical activation that tracked parametric levels of perceived memory strength. Anatomically constrained MEG current estimates revealed that strength-dependent signal reductions onset within 150-300 ms. Memory strength appears to be rapidly signaled by medial temporal cortex through repetition suppression (activation reductions), providing a basis for the subjective perception of stimulus familiarity or novelty.  相似文献   

15.
Jäger T  Mecklinger A  Kipp KH 《Neuron》2006,52(3):535-545
Single-process models of recognition memory posit that recognizing is based on a unidimensional value of global memory strength. By contrast, dual-process models propose the existence of two independent processes subserving the explicit recognition of previously encountered episodes, namely "familiarity" and "recollection." Familiarity represents a noncontextual form of recognition that may only support the retrieval of associative information when the to-be-associated information can be unitized, such as when two photographs depicting the same person are memorized (intra-item associations). Conversely, recollection enables retrieving associations between arbitrarily linked information, such as associations between photographs of different persons (inter-item associations). By measuring event-related brain potentials (ERPs), we obtained a double dissociation of familiarity and recollection that strongly favors dual-process accounts of recognition memory: the electrophysiological correlate of familiarity was significantly larger for intra- than for inter-item associations. Conversely, the electrophysiological correlate of recollection was significantly larger for inter- than for intra-item associations.  相似文献   

16.
Recent evidence suggests that while reflectance information (including color) may be more diagnostic for familiar face recognition, shape may be more diagnostic for unfamiliar face identity processing. Moreover, event-related potential (ERP) findings suggest an earlier onset for neural processing of facial shape compared to reflectance. In the current study, we aimed to explore specifically the roles of facial shape and color in a familiarity decision task using pre-experimentally familiar (famous) and unfamiliar faces that were caricatured either in shape-only, color-only, or both (full; shape + color) by 15%, 30%, or 45%. We recorded accuracies, mean reaction times, and face-sensitive ERPs. Performance data revealed that shape caricaturing facilitated identity processing for unfamiliar faces only. In the ERP data, such effects of shape caricaturing emerged earlier than those of color caricaturing. Unsurprisingly, ERP effects were accentuated for larger levels of caricaturing. Overall, our findings corroborate the importance of shape for identity processing of unfamiliar faces and demonstrate an earlier onset of neural processing for facial shape compared to color.  相似文献   

17.
In 7–8 and 9–10-years old children, we studied event-related potentials (ERPs) during paired comparison of non-verbalizable visuospatial stimuli presented at an interval of 1.5–1.8 s. Age-related differences were found in the involvement of various cortical areas in the formation and retention of a short-term memory trace of the reference stimulus and during comparison of the short-term trace with the test stimulus presented. In both age groups, working memory was associated with an elevation of the amplitude of the sensory-specific N1 component in the visual cortical areas. Age-related differences in the processing of sensory-specific characteristics of a stimulus were the greatest in the ERPs to the test stimulus: at the age of 9–10, the N1 component amplitude was significantly increased in all caudal leads and, in the occipital and inferior temporal leads, this component was preceded by P1 component. At this age, we observed the early involvement of the inferior frontal cortex, which was not observed at the age of seven. The increase in positivity over that area was observed in the interval of 100–200 ms. Substantial differences between age groups were found in the late ERP component corresponding to cognitive processes. At the age of 7–8, the presentation of both the reference and test stimuli causes the increase in the amplitude of the slow positive complex (SPC) in the caudal liads with the maximum enhancement found in the interval of 300–800 ms in the parietal leads. At the age of 9–10, the SPC increase, much like in adults, was observed in ERP to the test stimulus only. At this age, adult-like specific changes in the late phases of ERPs were observed in the fronto-central regions at the different stages of working memory. They are the increases in the negative N400 wave in the ERP to the reference stimulus and the SPC to the test stimulus. These data show that, at the age of 9–10, the functional organization of working memory of the adult type is formed; however, the extent to which the frontal cortex, and its dorsal regions in particular, is involved into working memory processes does not meet yet a definitive level.  相似文献   

18.
The neurocognitive basis of memory retrieval is often examined by investigating brain potential old/new effects, which are differences in brain activity between successfully remembered repeated stimuli and correctly rejected new stimuli in a recognition test. In this study, we combined analyses of old/new effects for words with an item-method directed-forgetting manipulation in order to isolate differences between the retrieval processes elicited by words that participants were initially instructed to commit to memory and those that participants were initially instructed to forget. We compared old/new effects elicited by to-be-forgotten (TBF) words with those elicited by to-be-remembered (TBR) words in both an explicit-memory test (a recognition test) and an implicit-memory test (a lexical-decision test). Behavioral results showed clear directed forgetting effects in the recognition test, but not in the lexical decision test. Mirroring the behavioral findings, analyses of brain potentials showed evidence of directed forgetting only in the recognition test. In this test, potentials from 450–650 ms (P600 old/new effects) were more positive for TBR relative to TBF words. By contrast, P600 effects evident during the lexical-decision test did not differ in magnitude between TBR and TBF items. When taken in the context of prior studies that have linked similar parietal old/new effects to the recollection of episodic information, these data suggest that directed-forgetting effects manifest primarily in greater episodic retrieval by TBR than TBF items, and that retrieval intention may be important for these directed-forgetting effects to occur.  相似文献   

19.
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.  相似文献   

20.
For listeners familiar with Western twelve-tone equal-tempered (12-TET) music, a novel microtonal tuning system is expected to present additional processing challenges. We aimed to determine whether this was the case, focusing on the extent to which our perceptions can be considered bottom-up (psychoacoustic and primarily perceptual) and top-down (dependent on familiarity and cognitive processing). We elicited both overt response ratings, and covert event-related potentials (ERPs), so as to compare subjective impressions of sounds with the neurophysiological processing of the acoustic signal. We hypothesised that microtonal intervals are perceived differently from 12-TET intervals, and that the responses of musicians (n = 10) and non-musicians (n = 10) are distinct. Two-note chords were presented comprising 12-TET intervals (consonant and dissonant) or microtonal (quarter tone) intervals, and ERP, subjective roughness ratings, and liking ratings were recorded successively. Musical experience mediated the perception of differences between dissonant and microtone intervals, with non-musicians giving similar ratings for each, and musicians preferring dissonant over the less commonly used microtonal intervals, rating them as less rough. ERP response amplitude was greater for consonant intervals than other intervals. Musical experience interacted with interval type, suggesting that musical expertise facilitates the sensory and perceptual discrimination of microtonal intervals from 12-TET intervals, and an increased ability to categorize such intervals. Non-musicians appear to have perceived microtonal intervals as instances of neighbouring 12-TET intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号