首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The neuronal ceroid lipofuscinoses (NCL) are a group of disorders defined by shared clinical and pathological features, including seizures and progressive decline in vision, neurocognition, and motor functioning, as well as accumulation of autofluorescent lysosomal storage material, or ‘ceroid lipofuscin’. Research has revealed thirteen distinct genetic subtypes. Precisely how the gene mutations lead to the clinical phenotype is still incompletely understood, but recent research progress is starting to shed light on disease mechanisms, in both gene-specific and shared pathways. As the application of new sequencing technologies to genetic disease diagnosis has grown, so too has the spectrum of clinical phenotypes caused by mutations in the NCL genes. Most genes causing NCL have probably been identified, underscoring the need for a shift towards applying genomics approaches to achieve a deeper understanding of the molecular basis of the NCLs and related disorders. Here, we summarize the current understanding of the thirteen identified NCL genes and the proteins they encode, touching upon the spectrum of clinical manifestations linked to each of the genes, and we highlight recent progress leading to a broader understanding of key pathways involved in NCL disease pathogenesis and commonalities with other neurodegenerative diseases.  相似文献   

3.
The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders and together are the most common degenerative brain diseases in childhood. They are a group of disorders linked by the characteristic accumulation of abnormal storage material in neurons and other cell types, and a degenerative disease course. All NCLs are characterized by a combination of dementia, epilepsy, and motor decline. For most childhood NCLs, a progressive visual failure is also a core feature. The characteristics of these symptoms can vary and the age at disease onset ranges from birth to young adulthood. Genetic heterogeneity, with fourteen identified NCL genes and wide phenotypic variability render diagnosis difficult. A new NCL classification system based on the affected gene and the age at disease onset allows a precise and practical delineation of an individual patient's NCL type. A diagnostic algorithm to identify each NCL form is presented here. Precise NCL diagnosis is essential not only for genetic counseling, but also for the optimal delivery of care and information sharing with the family and other caregivers. These aspects are challenging because there are also potential long term complications which are specific to NCL type. Therefore care supported by a specifically experienced team of clinicians is recommended. As the underlying pathophysiological mechanism is still unclear for all NCL forms, the development of curative therapies remains difficult. This article is part of a Special Issue entitled: The neuronal ceroid lipofuscinoses or Batten Disease.  相似文献   

4.
5.
Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.  相似文献   

6.
Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans and is considered a reemerging pathogen of significant importance to public health. The DENV capsid (C) protein functions as a structural component of the infectious virion; however, it may have additional functions in the virus replicative cycle. Here, we show that the DENV C protein interacts and colocalizes with the multifunctional host protein nucleolin (NCL). Furthermore, we demonstrate that this interaction can be disrupted by the addition of an NCL binding aptamer (AS1411). Knockdown of NCL with small interfering RNA (siRNA) or treatment of cells with AS1411 results in a significant reduction of viral titers after DENV infection. Western blotting and quantitative RT-PCR (qRT-PCR) analysis revealed no differences in viral RNA or protein levels at early time points postinfection, suggesting a role for NCL in viral morphogenesis. We support this hypothesis by showing that treatment with AS1411 alters the migration characteristics of the viral capsid, as visualized by native electrophoresis. Here, we identify a critical interaction between DENV C protein and NCL that represents a potential new target for the development of antiviral therapeutics.  相似文献   

7.
8.
The neuronal ceroid lipofuscinoses (NCLs) are a group of neuronal degenerative diseases that primarily affect children. Previously we hypothesized that the similarity of the phenotypes among the variant subtypes of NCL suggests that the NCLs share a common metabolic functional pathway. To test our hypothesis, we have studied several candidate proteins identified using a proteomic approach. We analyzed their differential expression and cataloged their functions and involved pathways. Forty protein peaks, differentially expressed in NCLs, were selected from two-dimensional protein fragmentation (PF2D) maps and twenty-four proteins were identified by MALDI-TOF-MS or LC-ESI-MS/MS. Six proteins were verified by further Western blotting. Our results showed that annexin A1, annexin A2, and vimentin were significantly down-regulated in NCL1, NCL2, NCL3, and NCL8 cells; galectin-1 was down-regulated in NCL1, NCL3, and NCL8 but up-regulated in NCL2 cells; and isoform 5 of caldesmon was up-regulated in all NCL cell types. The histone 2B was down-regulated in NCL3. Functional analysis showed that the differentially expressed proteins identified by PF2D could be grouped into categories of intermediate filaments, cell motility, apoptosis, cytoskeleton, membrane trafficking, calcium binding, nucleosome assembly, pigment granule and cell development. Immunocytochemistry revealed nuclear translocalization of annexin A1 in CLN2-deficient fibroblasts and abnormal distribution of L-caldesmon in cultured CLN1, CLN2, CLN3 and CLN8-deficient fibroblasts. Finding differentially expressed proteins in variant NCLs, which showed disturbances of cytoskeleton, RAGE-dependent cellular pathways and decreased glycolysis provides evidence supporting our hypothesis. These findings may contribute to the discovery of molecular biomarkers and may help further elucidate the pathogenic mechanisms underlying the NCLs.  相似文献   

9.

Background

The Neuronal Ceroid Lipofuscinoses (NCL) comprise at least nine progressive neurodegenerative genetic disorders. Kufs disease, an adult-onset form of NCL may be recessively or dominantly inherited. Our study aimed to identify genetic mutations associated with autosomal dominant Kufs disease (ADKD).

Methodology and Principal Findings

We have studied the family first reported with this phenotype in the 1970s, the Parry family. The proband had progressive psychiatric manifestations, seizures and cognitive decline starting in her mid 20 s. Similarly affected relatives were observed in seven generations. Several of the affected individuals had post-mortem neuropathological brain study confirmatory for NCL disease. We conducted whole exome sequencing of three affected family members and identified a pLeu116del mutation in the gene DNAJC5, which segregated with the disease phenotype. An additional eight unrelated affected individuals with documented autosomal dominant or sporadic inheritance were studied. All had diagnostic confirmation with neuropathological studies of brain tissue. Among them we identified an additional individual with a p.Leu115Arg mutation in DNAJC5. In addition, a pAsn477Ser change in the neighboring gene PRPF6, a gene previously found to be associated with retinitis pigmentosa, segregated with the ADKD phenotype. Interestingly, two individuals of the Parry family did report visual impairment.

Conclusions

Our study confirmed the recently reported association of DNAJC5 mutations with ADKD in two out of nine well-defined families. Sequence changes in PRPF6 have not been identified in other unrelated cases. The association of vision impairment with the expected PRPF6 dysfunction remains possible but would need further clinical studies in order to confirm the co-segregation of the visual impairment with this sequence change.  相似文献   

10.
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.  相似文献   

11.
A heritable neurodegenerative disease of English Setters has long been studied as a model of human neuronal ceroid-lipofuscinosis (NCL). Megablast searches of the first build of the canine genome for potential causative genes located the CLN8 gene near the q telomere of canine chromosome 37, close to a marker previously linked to English Setter NCL. Sequence analysis of the coding region from affected dogs revealed a T-to-C transition in the CLN8 gene that predicts a p.L164P missense mutation. Leucine 164 is conserved in four other mammalian species. The C allele co-segregated with the disease phenotype in a two-generation English Setter family in a pattern consistent with autosomal recessive inheritance. All four NCL-affected family members were C/C homozygotes and all four obligate carriers were C/T heterozygotes; whereas, 103 unrelated dogs were all T/T homozygotes. These findings indicate that the CLN8 T-to-C transition is the likely cause of English Setter NCL.  相似文献   

12.
Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein–associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.

Unbiased proteomics with acyl resin-assisted capture reveals diverse novel substrates of the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) at the synapse, with potential implications for the pathogenesis of neuronal ceroid lipofuscinosis, disulfide bond formation, synaptic adhesion and additional critical synaptic functions.  相似文献   

13.
Shacka JJ  Roth KA 《Autophagy》2007,3(5):474-476
Animal models of cathepsin D (CD) deficiency are characterized by a progressive and relentless neurodegenerative phenotype similar to that observed in Neuronal Ceroid Lipofuscinoses (NCL), a group of pediatric neurodegenerative diseases known collectively as Batten Disease. We have shown recently that the targeted deletion of the pro-apoptotic molecule Bax prevents apoptotic markers but not neuron death and neurodegeneration induced by CD deficiency, which suggests that alterations in the macroautophagy-lysosomal degradation pathway can mediate neuron death in NCL/Batten Disease in the absence of apoptosis. Herein, we review CD deficiency in the broader context of NCL and offer potential mechanisms for neuron death and neurodegeneration induced by CD deficiency.  相似文献   

14.
The autophagy-lysosomal pathway (ALP) regulates cell homeostasis and plays a crucial role in human diseases, such as lysosomal storage disorders (LSDs) and common neurodegenerative diseases. Therefore, the identification of DNA sequence variations in genes involved in this pathway and their association with human diseases would have a significant impact on health. To this aim, we developed Lysoplex, a targeted next-generation sequencing (NGS) approach, which allowed us to obtain a uniform and accurate coding sequence coverage of a comprehensive set of 891 genes involved in lysosomal, endocytic, and autophagic pathways. Lysoplex was successfully validated on 14 different types of LSDs and then used to analyze 48 mutation-unknown patients with a clinical phenotype of neuronal ceroid lipofuscinosis (NCL), a genetically heterogeneous subtype of LSD. Lysoplex allowed us to identify pathogenic mutations in 67% of patients, most of whom had been unsuccessfully analyzed by several sequencing approaches. In addition, in 3 patients, we found potential disease-causing variants in novel NCL candidate genes. We then compared the variant detection power of Lysoplex with data derived from public whole exome sequencing (WES) efforts. On average, a 50% higher number of validated amino acid changes and truncating variations per gene were identified. Overall, we identified 61 truncating sequence variations and 488 missense variations with a high probability to cause loss of function in a total of 316 genes. Interestingly, some loss-of-function variations of genes involved in the ALP pathway were found in homozygosity in the normal population, suggesting that their role is not essential. Thus, Lysoplex provided a comprehensive catalog of sequence variants in ALP genes and allows the assessment of their relevance in cell biology as well as their contribution to human disease.  相似文献   

15.
The chronic fatigue syndrome: a comparative pathway analysis.   总被引:2,自引:0,他引:2  
In this paper, we introduce a method to detect pathological pathways of a disease. We aim to identify biological processes rather than single genes affected by the chronic fatigue syndrome (CFS). So far, CFS has neither diagnostic clinical signals nor abnormalities that could be diagnosed by laboratory examinations. It is also unclear if the CFS represents one disease or can be subdivided in different categories. We use information from clinical trials, the gene ontology (GO) database as well as gene expression data to identify undirected dependency graphs (UDGs) representing biological processes according to the GO database. The structural comparison of UDGs of sick versus non-sick patients allows us to make predictions about the modification of pathways due to pathogenesis.  相似文献   

16.
Nucleolin (NCL) is one of the most abundant nucleolar proteins of exponentially growing eukaryotic cells. It is known to interact only transiently with rRNA and preribosomal particles and not to be detectable in mature cytoplasmic ribosomes, and is believed to function as multi-protein complexes during ribosome biogenesis and maturation. However, those multiprotein complexes remain only partially characterized due to the difficulty of conventional protein analysis methods. Here we report isolation of NCL-binding protein complex and its proteomic characterization with the use of an analytical method based on matrix-assisted laser desorption/ionization-time of flight analysis coupled with searching peptide mass databases. The NCL-binding protein complex was isolated by immunoprecipitation with anti-Flag antibody from human kidney 293 cells that were transfected with the Flag-tagged NCL gene, and showed RNA integrity for holding their protein constituents. Interaction between NCL and its binding complex was disrupted by an RNA oligonucleotide with a NCL recognition element, indicating that NCL binds to the ribonucleoprotein (RNP) complex mainly through the sequence specific protein-RNA interaction. We confirmed that an RNA-binding domain of NCL alone was sufficient to hold the entire NCL-binding RNP complex, indicating the strict binding specificity of NCL to the isolated RNP complex in 293 cells. We identified forty ribosomal proteins from both the large and small subunits, and twenty nonribosomal proteins. These results together suggest that the isolated NCL-binding RNP complex is a preribosomal particle present in the nucleolus of 293 cells.  相似文献   

17.
The Pathway Tools cellular overview diagram and Omics Viewer   总被引:5,自引:0,他引:5  
The Pathway Tools cellular overview diagram is a visual representation of the biochemical network of an organism. The overview is automatically created from a Pathway/Genome Database describing that organism. The cellular overview includes metabolic, transport and signaling pathways, and other membrane and periplasmic proteins. Pathway Tools supports interrogation and exploration of cellular biochemical networks through the overview diagram. Furthermore, a software component called the Omics Viewer provides visual analysis of whole-organism datasets using the overview diagram as an organizing framework. For example, gene expression and metabolomics measurements, alone or in combination, can be painted onto the overview, as can computed whole-organism datasets, such as predicted reaction-flux values. The cellular overview and Omics Viewer provide a mechanism whereby biologists can apply the pattern-recognition capabilities of the human visual system to analyze large-scale datasets in a biologically meaningful context. SRI's BioCyc.org website provides overview diagrams for more than 200 organisms. This article describes enhancements to the overview made since a 1999 publication, including the automatic layout capability, expansion of the cellular machinery that it includes, new semantic zooming and poster-generating capabilities, and extension of the Omics Viewer to support painting of metabolites, animations and zooming to individual pathway diagrams.  相似文献   

18.
Acrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use of Escherichia coli to express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, and β-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields. When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA and β-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.  相似文献   

19.
There is a pressing need today to mechanistically interpret sets of genomic variants associated with diseases. Here we present a tool called ‘VarSAn’ that uses a network analysis algorithm to identify pathways relevant to a given set of variants. VarSAn analyzes a configurable network whose nodes represent variants, genes and pathways, using a Random Walk with Restarts algorithm to rank pathways for relevance to the given variants, and reports P-values for pathway relevance. It treats non-coding and coding variants differently, properly accounts for the number of pathways impacted by each variant and identifies relevant pathways even if many variants do not directly impact genes of the pathway. We use VarSAn to identify pathways relevant to variants related to cancer and several other diseases, as well as drug response variation. We find VarSAn''s pathway ranking to be complementary to the standard approach of enrichment tests on genes related to the query set. We adopt a novel benchmarking strategy to quantify its advantage over this baseline approach. Finally, we use VarSAn to discover key pathways, including the VEGFA-VEGFR2 pathway, related to de novo variants in patients of Hypoplastic Left Heart Syndrome, a rare and severe congenital heart defect.  相似文献   

20.
Model systems provide an invaluable tool for investigating the molecular mechanisms underlying the NCLs, devastating neurodegenerative disorders that affect the relatively inaccessible tissues of the central nervous system. These models have enabled the assessment of behavioural, pathological, cellular, and molecular abnormalities, and also allow for development and evaluation of novel therapies. This review highlights the relative advantages of the two available small vertebrate species, the mouse and zebrafish, in modelling NCL disease, summarising how these have been useful in NCL research and their potential for the development and testing of prospective disease treatments. A panel of mouse mutants is available representing all the cloned NCL gene disorders (Cathepsin D, CLN1, CLN2, CLN3, CLN5, CLN6, CLN8). These NCL mice all have progressive neurodegenerative phenotypes that closely resemble the pathology of human NCL. The analysis of these models has highlighted several novel aspects underlying NCL pathogenesis including the selective nature of neurodegeneration, evidence for glial responses that precede neuronal loss and identification of the thalamus as an important pathological target early in disease progression. Studies in mice have also highlighted an unexpected heterogeneity underlying NCL phenotypes, and novel potential NCL-like mouse models have been described including mice with mutations in cathepsins, CLC chloride channels, and other lysosome-related genes. These new models are likely to provide significant new information on the spectrum of NCL disease. Information on NCL mice is available in the NCL Mouse Model Database (). There are homologs of most of the NCL genes in zebrafish, and NCL zebrafish models are currently in development. This model system provides additional advantages to those provided by NCL mouse models including high-throughput mutational, pharmacogenetic and therapeutic technique analyses. Mouse and zebrafish models are an important shared resource for NCL research, offering a unique possibility to dissect disease mechanisms and to develop therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号