首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2′,7′-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.  相似文献   

2.
Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.  相似文献   

3.
BackgroundThe di-2-pyridylketone thiosemicarbazones, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), demonstrate potent and selective anti-tumor activity. In fact, DpC entered Phase I clinical trials for advanced and resistant tumors.MethodsThis investigation examined the activity of these thiosemicarbazones in five tumor cell-types compared to nine clinically used chemotherapeutics and also in combination with these drugs.ResultsDp44mT and especially DpC demonstrated potent anti-proliferative activity that was significantly greater than a range of standard anti-cancer therapeutics. As most anti-cancer drugs are given in combination, further studies were performed to examine the synergistic activity of DpC or Dp44mT with these chemotherapeutics. Combination experiments revealed broad synergy between Dp44mT or DpC upon addition of these drugs, with a sequential protocol of treating first with standard chemotherapies followed by incubation with the thiosemicarbazones being optimal. However, combining DpC and Dp44mT resulted in a pronounced antagonistic drug interaction. To dissect the mechanism of this latter effect, custom-prepared 14C-DpC was implemented and examined for its uptake by cells. The avid uptake of 14C-DpC by tumor cells observed at 37 °C was suppressed at 4 °C and by the metabolic inhibitor, sodium fluoride, suggesting a temperature- and energy-dependent mechanism. Furthermore, competition studies using an excess of unlabeled Dp44mT or DpC inhibited 14C-DpC or 14C-Dp44mT uptake, respectively, suggesting these ligands utilize the same carrier/receptor, antagonizing the internalization of each other.Conclusions and general significanceThese studies demonstrate the potent and broad anti-proliferative activity of Dp44mT and particularly DpC, and are important for establishing optimized combinations with standard chemotherapies.  相似文献   

4.
5.
BackgroundIron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.MethodsHerein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.ResultsIn the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.Conclusions and general significanceAscorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.  相似文献   

6.
The iron chelating agent Dp44mT (di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone) and the clinically approved cardioprotective agent dexrazoxane (ICRF-187) were compared for their ability to protect neonatal rat cardiac myocytes from doxorubicin-induced damage. Doxorubicin is thought to induce oxidative stress on the heart muscle through iron-mediated oxygen radical damage. While dexrazoxane was able to protect myocytes from doxorubicin-induced lactate dehydrogenase release, in contrast Dp44mT synergistically increased doxorubicin-induced damage. This occurred in spite of the fact that Dp44mT quickly and efficiently removed iron(III) from its complex with doxorubicin and that Dp44mT also rapidly entered myocytes and displaced iron from a fluorescence-quenched trapped intracellular iron-calcein complex. Electron paramagnetic resonance spin trapping was used to show that iron complexes of Dp44mT were not able to generate hydroxyl radicals, suggesting that its cytotoxicity was not due to reactive oxygen species formation. In conclusion Dp44mT is unlikely to be useful as an anthracycline cardioprotective agent.  相似文献   

7.
Cholesterol homeostasis is strictly regulated through the modulation of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of cholesterol synthesis. Phosphorylation of HMGCR inactivates it and dephosphorylation activates it. AMP-activated protein kinase (AMPK) is the major kinase phosphorylating the enzyme. Our previous study found that thyroid-stimulating hormone (TSH) increased the hepatocytic HMGCR expression, but it was still unclear whether TSH affected hepatic HMGCR phosphorylation associated with AMPK. We used bovine TSH (bTSH) to treat the primary mouse hepatocytes and HepG2 cells with or without constitutively active (CA)-AMPK plasmid or protein kinase A inhibitor (H89), and set up the TSH receptor (Tshr)-KO mouse models. The p-HMGCR, p-AMPK, and related molecular expression were tested. The ratios of p-HMGCR/HMGCR and p-AMPK/AMPK decreased in the hepatocytes in a dose-dependent manner following bTSH stimulation. The changes above were inversed when the cells were treated with CA-AMPK plasmid or H89. In Tshr-KO mice, the ratios of liver p-HMGCR/HMGCR and p-AMPK/AMPK were increased relative to the littermate wild-type mice. Consistently, the phosphorylation of acetyl-CoA carboxylase, a downstream target molecule of AMPK, increased. All results suggested that TSH could regulate the phosphorylation of HMGCR via AMPK, which established a potential mechanism for hypercholesterolemia involved in a direct action of the TSH in the liver.  相似文献   

8.
CC3/TIP30 is a metastasis and tumor suppressor, with reduced or absent expression in a variety of aggressive tumors. Overexpression of CC3 in tumor cells predisposes them to apoptosis in response to different death signals. We found that silencing of CC3 expression does not increase apoptotic resistance of cells. However, it strongly improves survival of tumor cells in response to glucose limitation. HeLa cells with silenced CC3 survive long-term in low glucose, and in comparison to control HeLa cells, show superior metabolic adaptation to glucose limitation. First, unlike the parental HeLa cells, HeLa with silenced CC3 activate and maintain high levels of mitochondrial respiration that is critical for their ability to thrive in low glucose. Second, silencing of CC3 leads to higher expression levels of mitochondrial proteins in respiration complexes when cells are continuously cultured in limiting glucose. Third, HeLa cells with silenced CC3 maintain higher levels of c-MYC and the M2 isoform of pyruvate kinase in low glucose, contributing to more efficient glycolysis. Fourth, HeLa cells with silenced CC3 fail to fully activate AMPK in response to glucose limitation. Inhibition of AMPK, either pharmacologic or via siRNA, protects control HeLa cells from death in low glucose. The metabolic flexibility acquired by cells after silencing of CC3 could be directly relevant to the development of metastatic and aggressive human tumors that frequently have low or absent expression of CC3.Key words: CC3/TIP30, glycolysis, OXPHOS, MYC, AMPK  相似文献   

9.
10.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   

11.
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes.  相似文献   

12.
The olive flounder, Paralichthys olivaceus, is a commercially important maricultured fish in China, Japan, and Korea. Low winter temperatures influence its survival and growth and affect the output of the aquaculture industry. Energy metabolism is essential for fish survival, and the central energy-regulating factor – 5ʹ-AMP-activated protein kinase (AMPK) – plays an important role in responses to cold stress. However, the mechanism of AMPK pathway regulation in fish coping with cold stress remains poorly understood. In the present study, the expression of AMPK and its upstream (LKB1 and CaMKKβ) and downstream genes (SITR1, FOXO1A, and TFAM) in the brain, muscle, and heart was analyzed while the flounder was under cold stress (0.2 ± 0.2 °C). The results showed that low temperatures activated LKB1, CaMKKβ, and AMPK genes in the brain, and the activated AMPK induced expression of SITR1, FOXO1A, and TFAM. In the muscle tissue, the expression patterns of these genes presented a trend of initially decreasing and then increasing, and there was a delay in the response to low temperatures. At the cellular level, comparative analysis of the effects of the activator 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) and inhibitor compound C of the AMPK pathway demonstrated that cold stress was similar to AICAR, which activated the AMPK pathway with hysteresis. Thus, the regulation mechanism of AMPK under cold stress was preliminarily analyzed. In general, AMPK was involved not only in responses to low temperatures but also in energy regulation under cold stress.  相似文献   

13.
One of the pathways to reduce cholesterol production in the liver is through the inhibition of HMG-Coa reductase (HMGCR) by current drugs, statins. However, these have side effects if consumed in prolonged periods. Tangeretin and trans-ethyl caffeate as alternative drugs in reducing hypercholesterolemia and preventing atherosclerosis have never been reported. Their effects on inhibiting HMGCR activity were investigated through enzymatic method (in vitro and in vivo). The toxicity property was analyzed on the Serum Glutamate Oxalate Transaminase (SGOT)/Serum Glutamate Piruvate Transaminase (SGPT) levels and rat liver histology. The results showed that both compounds inhibited HMGCR activity significantly compare to the control simvastatin (p < 0.05). Tangeretin which showed very good activity in inhibiting HMGCR (83.8 of % inhibition, equal to simvastatin) was selected and used for anti-hypercholesterolemia in vivo assessment. Furthermore, tangeretin was shown to effectively reduced Total Cholesterol (TC) and Low Density Lipoprotein (LDL), and increased High Density Lipoprotein (HDL) levels significantly compared to the simvastatin group (p < 0.05). Tangeretin group was also proven to inhibit HMGCR rat liver activity significantly compare to the control simvastatin (p < 0.05). The toxicity study on the SGOT/SGPT levels and liver histology revealed that there were no side effects after administration by tangeretin. Results found that both tangeretin and trans-ethyl caffeate are potent candidates as anti-hypercholesterolemia agent in vitro. In addition, tangeretin was also shown to be safe and suitable as an alternative treatment for controlling hypercholesterolemia in vivo as well as have potency for preventing atherosclerosis.  相似文献   

14.
N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.  相似文献   

15.
The role of signaling pathways in the regulation of cellular iron metabolism is becoming increasingly recognized. Iron chelation is used for the treatment of iron overload but also as a potential strategy for cancer therapy, because iron depletion results in cell cycle arrest and apoptosis. This study examined potential signaling pathways affected by iron depletion induced by desferrioxamine (DFO) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Both chelators affected multiple molecules in the mitogen-activated protein kinase (MAPK) pathway, including a number of dual specificity phosphatases that directly de-phosphorylate MAPKs. Examination of the phosphorylation of major MAPKs revealed that DFO and Dp44mT markedly increased phosphorylation of stress-activated protein kinases, JNK and p38, without significantly affecting the extracellular signal-regulated kinase (ERK). Redox-inactive DFO-iron complexes did not affect phosphorylation of JNK or p38, whereas the redox-active Dp44mT-iron complex significantly increased the phosphorylation of these kinases similarly to Dp44mT alone. Iron or N-acetylcysteine supplementation reversed Dp44mT-induced up-regulation of phospho-JNK, but only iron was able to reverse the effect of DFO on JNK. Both iron chelators significantly reduced ASK1-thioredoxin complex formation, resulting in the increased phosphorylation of ASK1, which activates the JNK and p38 pathways. Thus, dissociation of ASK1 could serve as an important signal for the phosphorylation of JNK and p38 activation observed after iron chelation. Phosphorylation of JNK and p38 likely play an important role in mediating the cell cycle arrest and apoptosis induced by iron depletion.  相似文献   

16.
The homeostasis dysfunctions caused by cold stress remain a threat to intestinal health, particularly for young broiler chickens. We hypothesized that adenosine monophosphate-activated protein kinase (AMPK) was involved in the regulation of cold stress on intestinal health. This study aimed to examine the effect of cold stress for 72 h on growth performance, serum biochemistry, intestinal barrier molecules, and AMPK in broilers. A total of 144 10-day-old male Arbor Acres broilers were subjected to temperature treatments (control 28 ± 1 °C vs cold stress 16 ± 1 °C) for 72 h. Growth performance was monitored, serum was collected for the analysis of physiological parameters, and jejunal mucosa was sampled for the determination of tight junction (TJ) proteins, heat shock proteins, and AMPK signaling molecules. Results showed that 72 h cold treatment reduced average BW gain and increased the feed conversion ratio of the broilers (P < 0.05). Cold stress for 72 h increased blood endotoxin, aspartate aminotransferase, glucose, and low-density lipoprotein cholesterol levels (P < 0.05). Moreover, 72 h cold treatment up-regulated jejunal Occludin, zonula occludin 1, inducible nitric oxide synthase, heat shock factor 1, and AMPKα1 gene expression (P < 0.05) but had no obvious effect on total AMPK protein expression (P > 0.05). In conclusion, cold stress significantly reduced the growth performance of broiler chickens. The intestinal barrier function might be impaired, and enhanced bacterial translocation might occur. The unregulated gene expression of TJ proteins implied the remodeling of intestinal barrier. The change of AMPK suggested the possible relationship between intestinal energy metabolism and barrier function under cold stress.  相似文献   

17.
18.
When DNA is damaged by alkylating agents, apoptosis is induced to exclude cells carrying DNA lesions in order to prevent mutations and cancer. MAPO1, identified as a component involved in the induction of apoptosis, interacts with AMP-activated protein kinase (AMPK) and folliculin (FLCN). We herein report that MAPO1 is stabilized during the course of apoptosis, triggered by alkylation-induced O6-methylguanine in DNA. An immunoblotting analysis revealed that the amount of MAPO1 increased gradually after treatment with N-methyl-N-nitrosourea (MNU), although the level of mRNA for MAPO1 was unchanged. When cells were exposed to a proteasome inhibitor, MG132, the MAPO1 level significantly increased. On the other hand, application of a protein synthesis inhibitor, cycloheximide, caused a decrease in the MAPO1 content, implying that proteasome-mediated degradation is involved. In FLCN-knockdown cells, the MAPO1 level decreased, and no increases occurred even after MNU treatment. In contrast, stabilization of MAPO1 occurred in AMPKα-knockdown cells even without MNU treatment. While MAPO1 retains its ability to stably bind to FLCN, it dissociates gradually from AMPK after exposure to MNU. It seems that the proapoptotic function of MAPO1 may be regulated by AMPK and FLCN through stabilization of MAPO1 itself.  相似文献   

19.
The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), exhibits pleiotropic activity, inhibiting metastasis of various tumor-types, while being correlated with metastasis in others. Notably, NDRG1 phosphorylation and cleavage are associated with its function, although it is unclear if these modifications occur universally, or selectively, in different cancer cell-types and if it contributes to its pleiotropy. Considering the suggested DNA repair role of nuclear NDRG1, the effects of the above post-translational modifications on its nuclear localization was examined. Herein, the full-length (FL) and truncated (T) NDRG1 isoforms were detected using a C-terminus-directed antibody, while only the FL isoform was identified using an N-terminus-directed antibody. For the first time, we demonstrate that the expression of the NDRG1 FL and T forms occurs in all cancer cell-types examined, as does its phosphorylation (p-NDRG1) at Ser330 and Thr346. The FL isoform localized highly in the nucleus compared to the T isoform. Moreover, p-NDRG1 (Ser330) was also markedly localized in the nucleus, while p-NDRG1 (Thr346) was predominantly cytoplasmic in all cell-types. These results indicate the N-terminus region and phosphorylation at Ser330 could be crucial for NDRG1 nuclear localization and function. PTEN silencing indicated that p-NDRG1 (Thr346) could be regulated differentially in different tumor cell-types, indicating PTEN may be involved in the mechanism(s) underlying the pleiotropic activity of NDRG1. Finally, therapeutics of the di-2-pyridylketone thiosemicarbazone class increased nuclear NDRG1 isoforms (FL and T) detected by the C-terminus-directed antibody in HepG2 cells, while having no significant effect in PC3 cells, indicating differential activity depending on the cell-type.  相似文献   

20.
Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号