首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the thermal response of interscapular brown fat (IBF) to norepinephrine (NE), urethan-anesthetized rats (1.2 g/kg ip) maintained at 28-30 degrees C received a constant venous infusion of NE (0-2 x 10(4) pmol/min) over a period of 60 min. IBF temperatures (T(IBF)) were recorded with a small thermistor fixed under the IBF pad. Data were plotted against time and expressed as maximal variation (Deltat degrees C). Saline-injected rats showed a decrease in T(IBF) of approximately 0.6 degrees C. NE infusion increased T(IBF) by a maximum of approximately 3.0 degrees C at a dose of 10(4) pmol x min(-1) x 100 g body wt(-1). Surgically thyroidectomized (Tx) rats kept on 0.05% methimazole showed a flat response to NE. Treatment with thyroxine (T(4), 0.8 microg x 100 g(-1) x day(-1)) for 2-15 days normalized mitochondrial UCP1 (Western blotting) and IBF thermal response to NE, whereas iopanoic acid (5 mg x 100 g body wt(-1) x day(-1)) blocked the effects of T(4). Treatment with 3,5, 3'-triiodothyronine (T(3), 0.6 microg x 100 g body wt(-1) x day(-1)) for up to 15 days did not normalize UCP1 levels. However, these animals showed a normal IBF thermal response to NE. Cold exposure for 5 days or feeding a cafeteria diet for 20 days increased UCP1 levels by approximately 3.5-fold. Nevertheless, the IBF thermal response was only greater than that of controls when maximal doses of NE (2 x 10(4) pmol/min and higher) were used. Conclusions: 1) hypothyroidism is associated with a blunted IBF thermal response to NE; 2) two- to fourfold changes in mitochondrial UCP1 concentration are not necessarily translated into heat production during NE infusion.  相似文献   

2.
3.
Apart from UCP1-based nonshivering thermogenesis in brown adipocytes, the identity of thermogenic mechanisms that can be activated to reduce a positive energy balance is largely unknown. To identify potentially useful mechanisms, we have analyzed physiological and molecular mechanisms that enable mice, genetically deficient in UCP1 and sensitive to acute exposure to the cold at 4 degrees C, to adapt to long term exposure at 4 degrees C. UCP1-deficient mice that can adapt to the cold have increased oxygen consumption and show increased oxidation of both fat and glucose as indicated from serum metabolite levels and liver glycogen content. Enhanced energy metabolism in inguinal fat was also indicated by increased oxygen consumption and fat oxidation in tissue suspensions and increased AMP kinase activity in dissected tissues. Analysis of gene expression in skeletal muscle showed surprisingly little change between cold-adapted Ucp1+/+ and Ucp1-/- mice, whereas in inguinal fat a robust induction occurred for type 2 deiodinase, sarcoendoplasmic reticulum Ca2+-ATPase, mitochondrial glycerol 3-phosphate dehydrogenase, PGC1alpha, CoxII, and mitochondrial DNA content. Western blot analysis showed an induction of total phospholamban and its phosphorylated form in inguinal fat and other white fat depots, but no induction was apparent in muscle. We conclude that alternative thermogenic mechanisms, based in part upon the enhanced capacity for ion and substrate cycling associated with brown adipocytes in white fat depots, are induced in UCP1-deficient mice by gradual cold adaptation.  相似文献   

4.
Fatty liver is prevalent in apolipoprotein B (apoB)-defective familial hypobetalipoproteinemia (FHBL). Similar to humans, mouse models of FHBL produced by gene targeting (apob(+/38.9)) manifest low plasma cholesterol and increased hepatic triglycerides (TG) even on a chow diet due to impaired hepatic VLDL-TG secretive capacity. Because apoB truncations shorter than apoB48 are expressed in the intestine, we examined whether FHBL mice may have limited capacity for intestinal dietary TG absorption. In addition, we investigated whether FHBL mice are more susceptible to diet-induced hepatic TG accumulation. Fat absorption capacity was impaired in apoB38.9 mice in a gene dose-dependent manner. Relative fractional fat absorption coefficients for apob(+/+), apob(+/38.9), and apob(38.9/38.9) were 1.00, 0.96, and 0.71, respectively. To raise hepatic TG, we fed high-fat (HF) and low-fat (LF) pellets. Hepatic TG level was observed in rank order: HF > LF > chow. On both LF and HF, liver TG level was higher in the apob(+/38.9) than in apob(+/+). Hepatic TG secretion remained impaired in the apob(+/38.9) on the HF diet. Thus the FHBL mice are more susceptible to diet-induced fatty liver despite relatively reduced intestinal TG absorption capacity on a HF diet.  相似文献   

5.
[Arg8]Vasopressin (AVP) has an antilipolytic action on adipocytes, but little is known about the mechanisms involved. Here, we examined the involvement of the V1a receptor in the antilipolytic effect of AVP using V1a receptor-deficient (V1aR-/-) mice. The levels of blood glycerol were increased in V1aR-/- mice. The levels of ketone bodies, such as acetoacetic acid and 3-hydroxybutyric acid, the products of the lipid metabolism, were increased in V1aR-/- mice under a fasting condition. Triacylglyceride and free fatty acid levels in blood were decreased in V1aR-/- mice. Furthermore, measurements with tandem mass spectrometry determined that carnitine and acylcarnitines in serum, the products of beta-oxidation, were increased in V1aR-/- mice. Most acylcarnitines were increased in V1aR-/- mice, especially in the case of 2-carbon (C2), C10:1, C10, C14:1, C16, C18:1, and hydroxy-18:1-carbon (OH-C18:1)-acylcarnitines under feeding rather than under fasting conditions. The analysis of tissue C2-acylcarnitine level showed that beta-oxidation was promoted in muscle under the feeding condition and in liver under the fasting condition. An in vitro assay using brown adipocytes showed that the cells of V1aR-/- mice were more sensitive to isoproterenol for lipolysis. These results suggest that the lipid metabolism is enhanced in V1aR-/- mice. The cAMP level was enhanced in V1aR-/- mice in response to isoproterenol. The phosphorylation of Akt by insulin stimulation was reduced in V1aR-/- mice. These results suggest that insulin signaling is suppressed in V1aR-/- mice. In addition, the total bile acid, taurine, and cholesterol levels in blood were increased, and an enlargement of the cholecyst was observed in V1aR-/- mice. These results indicated that the production of bile acid was enhanced by the increased level of cholesterol and taurine. Therefore, these results indicated that AVP could modulate the lipid metabolism by the antilipolytic action and the synthesis of bile acid via the V1a receptor.  相似文献   

6.
The activity of brown adipose tissue (BAT), a site of nonshivering metabolic thermogenesis, has been reported to increase after interleukin (IL)-1beta/lipopolysaccharide injection. To clarify the possible contribution of BAT thermogenesis to whole body febrile response, we investigated febrile and thermogenic response to IL-1beta using mice deficient in uncoupling protein-1 (UCP1), a key molecule for BAT thermogenesis. In wild-type (WT) mice, IL-1beta injection (5 microg/kg ip) increased body temperature (+1.82 degrees C at 20 min), decreased physical activity (-37% at 1 h), and produced a slight and insignificant rise (+15% at 1 h) in oxygen consumption (Vo(2)). Vo(2) dependent on metabolic thermogenesis (DeltaVO2 thermogenesis) calculated by correcting the effect of physical activity was increased after IL-1beta injection (726 +/- 200 ml x h(-1) x kg(-1) at 1 h). Almost the same responses were observed in UCP1-deficient mice, showing 638 +/- 87 ml x h(-1) x kg(-1) of DeltaVO2 thermogenesis at 1 h. In contrast, CL316,243, a selective activator of BAT thermogenesis, increased body temperature, decreased physical activity, and produced a significant rise in Vo2 in WT mice, showing 1,229 +/- 35 ml x h(-1) x kg(-1) of DeltaVO2 thermogenesis at 1 h. These changes were not observed in UCP1-deficient mice. These results, conflicting with a previously proposed idea of a role of BAT in fever, suggest a minor contribution of BAT thermogenesis to IL-1beta-induced fever. In support of this, we found no effect of IL-1beta on triglyceride content and UCP1 mRNA level in BAT, in contrast with apparent effects of CL316,243.  相似文献   

7.
The bioenergetics of brown fat mitochondria isolated from UCP1-ablated mice were investigated. The mitochondria had lost the high GDP-binding capacity normally found in brown fat mitochondria, and they were innately in an energized state, in contrast to wild-type mitochondria. GDP, which led to energization of wild-type mitochondria, was without effect on the brown fat mitochondria from UCP1-ablated mice. The absence of thermogenic function did not result in reintroduction of high ATP synthase activity. Remarkably and unexpectedly, the mitochondria from UCP1-ablated mice were as sensitive to the de-energizing ("uncoupling") effect of free fatty acids as were UCP1-containing mitochondria. Therefore, the de-energizing effect of free fatty acids does not appear to be mediated via UCP1, and free fatty acids would not seem to be the intracellular physiological activator involved in mediation of the thermogenic signal from the adrenergic receptor to UCP1. In the UCP1-ablated mice, Ucp2 mRNA levels in brown adipose tissue were 14-fold higher and Ucp3 mRNA levels were marginally lower than in wild-type. The Ucp2 and Ucp3 mRNA levels were therefore among the highest found in any tissue. These high mRNA levels did not confer on the isolated mitochondria any properties associated with de-energization. Thus, the mere observation of a high level of Ucp2 or Ucp3 mRNA in a tissue cannot be taken as an indication that mitochondria isolated from that tissue will display innate de-energization or thermogenesis.  相似文献   

8.
Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. We found that interleukin (IL)-25 signaling through its cognate receptor, IL-17 receptor B (IL-17RB), increased in adipose tissue after cold exposure and β3-adrenoceptor agonist stimulation. IL-25 induced beige fat formation in white adipose tissue (WAT) by releasing IL-4 and IL-13 and promoting alternative activation of macrophages that regulate innervation and up-regulate tyrosine hydroxylase (TH) up-regulation to produce more catecholamine including norepinephrine (NE). Blockade of IL-4Rα or depletion of macrophages with clodronate-loaded liposomes in vivo significantly impaired the beige fat formation in WAT. Mice fed with a high-fat diet (HFD) were protected from obesity and related metabolic disorders when given IL-25 through a process that involved the uncoupling protein 1 (UCP1)-mediated thermogenesis. In conclusion, the activation of IL-25 signaling in WAT may have therapeutic potential for controlling obesity and its associated metabolic disorders.

Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. This study reveals that IL-25 is upregulated upon cold exposure and induces beige fat formation, with corresponding benefits to metabolic homeostasis; the effects of IL-25 are mediated by changes in macrophage polarization, which in turn influence tissue innervation.  相似文献   

9.
Mice lacking I-FABP (encoded by the Fabp2 gene) exhibit a gender dimorphic response to a high fat/cholesterol diet challenge characterized by hepatomegaly in male I-FABP-deficient mice. In this study, we determined if this gender-specific modification of liver mass in mice lacking I-FABP is attributable to the high fat content of the diet alone and whether hepatic Fabp1 gene (encodes L-FABP) expression contributes to this difference. Wild-type and Fabp2-/- mice of both genders were fed a diet enriched with either polyunsaturated or saturated fatty acids (PUFA or SFA, respectively) in the absence of cholesterol. Male Fabp2-/- mice, but not female Fabp2-/- mice, exhibited increased liver mass and hepatic triacylglycerol (TG) deposition as compared to corresponding wild-type mice. In wild-type mice that were fed the standard chow diet, there was no difference in the concentration of hepatic L-FABP protein between males and females although the loss of I-FABP did cause a slight reduction of hepatic L-FABP abundance in both genders. The hepatic L-FABP mRNA abundance in both male and female wild-type and Fabp2-/- mice was higher in the PUFA-fed group than in the SFA-fed group, and was correlated with L-FABP protein abundance. No correlation between hepatic L-FABP protein abundance and hepatic TG concentration was found. The results obtained demonstrate that loss of I-FABP renders male mice sensitive to high fat diet-induced fatty liver, and this effect is independent of hepatic L-FABP.  相似文献   

10.
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild-type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri-infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end-labelling (TUNEL)-labelled cells in the peri-infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia.  相似文献   

11.
The present study was performed to examine a role of adipose differentiation-related protein (ADRP) in the process of liver steatosis. Immunohistochemical findings indicated that ADRP expression is increased in the hepatocytes in patients with fatty liver when compared with normal liver. ADRP expression is localized in the surface of lipid droplets in the hepatocytes. Increased expression of ADRP mRNA and protein was similarly observed in fatty liver in ob/ob mice and the liver steatosis induced by high fat diet in mice. The up-regulation of ADRP mRNA and protein in the liver by high fat diet was identified in the surface of lipid droplets in a time-dependent manner. Recent studies demonstrated that up-regulation of PPARgamma in the hepatocytes is deeply involved in liver steatosis. To clarify whether ADRP expression is increased by PPARgamma activation in hepatocytes, we examined the effect of a PPARgamma ligand, troglitazone, on ADRP mRNA expression in HepG2 cells. ADRP mRNA expression was increased by troglitazone in dose- and time-dependent manners. All these results suggest that ADRP is up-regulated in liver steatosis in human and mice, and that high fat diet increases expression of ADRP through PPARgamma activation, followed by induction of liver steatosis.  相似文献   

12.
The receptor for advanced-glycation-end-products (RAGE) has been implicated as a pro-inflammatory factor in chronic inflammatory conditions such as diabetes mellitus and rheumatoid arthritis. The aim of this study was to investigate the inhibitory effect of the soluble-RAGE (sRAGE), the extracellular domain of RAGE, on RAGE expression and NF-κB translocation in human-salivary gland-cell-lines (HSG). Cells were stimulated with agonist S100A4, fusion protein of RAGE encompassing the extracellular domain of RAGE (ex-RAGE), ex-RAGE followed by S100A4, or S100A4 followed by ex-RAGE. Our study indicates that RAGE expression was highest at 150 µg/µl of S100A4 and efficiently down-regulated by 1.8-fold (P < 0.05) when ex-RAGE was incubated prior to agonist S100A4. RAGE protein was also consistently down-regulated by 20–40% with pre-incubation of ex-RAGE. More importantly, nuclear translocation of p65 and p52 of NF-κB by S100A4 was inhibited in the presence of ex-RAGE, confirming anti-inflammatory function of ex-RAGE. In conclusion, ex-RAGE down-regulates RAGE expression and inhibits p65 and p52 activation in HSG, providing evidence that ex-RAGE functions as a “decoy” to RAGE–ligand interaction and thus potentially dampening inflammatory conditions. J. Cell. Physiol. 221: 430–434, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

13.
An interaction between free fatty acids and UCP1 (uncoupling protein-1) leading to de-energization of mitochondria was assumed to be a key event for triggering heat production in brown fat. Recently, Matthias et al., finding indistinguishable de-energization of isolated brown fat mitochondria by fatty acids in UCP1-deficient mice and control mice, challenged this assumption (Matthias, A., Jacobsson, A., Cannon, B., and Nedergaard, J. (1999) J. Biol. Chem. 274, 28150-28160). Since their results were obtained using UCP1-deficient and control mice on an undefined genetic background, we wanted to determine unambiguously the phenotype of UCP1 deficiency with the targeted Ucp1 allele on congenic C57BL/6J and 129/SvImJ backgrounds. UCP1-deficient congenic mice have a very pronounced cold-sensitive phenotype; however, deficient mice on the F1 hybrid background were resistant to cold. We propose that heterosis provides a mechanism to compensate for UCP1 deficiency. Contrary to the results of Matthias et al., we found a significant loss of fatty acid-induced de-energization, as reflected by membrane potential and oxygen consumption, in brown fat mitochondria from UCP1-deficient mice. Unlike cold sensitivity, fatty acid-induced uncoupling of mitochondria was independent of the genetic background of UCP1-deficient mice. We propose that intracellular free fatty acids directly regulate uncoupling activity of UCP1 in a manner consistent with models described in the literature.  相似文献   

14.
Before cholesterol and fatty acid molecules in the small intestinal lumen can interact with their possible transporters for uptake and absorption, they must pass through a diffusion barrier, which may modify the kinetics of nutrient assimilation. This barrier includes an unstirred water layer and a surface mucous coat, which is located at the intestinal lumen-membrane interface. In the present study, we investigated whether disruption of the mucin gene (Muc)1 may influence intestinal uptake and absorption of cholesterol and fatty acid in male Muc1(-/-) mice. The wild-type mice displayed relatively high levels of Muc1, Muc2, Muc3, and Muc4 mRNAs and relatively low levels of Muc5ac and Muc5b mRNAs in the small intestine. The absence of Muc1 mRNA and protein in the small intestines of Muc1(-/-) mice confirmed complete knockout of the Muc1 gene, but the mRNA expression for other mucin genes remained unchanged. Intestinal uptake and absorption of cholesterol but not palmitic acid were significantly reduced in Muc1(-/-) mice compared with the wild-type mice. However, knockout of the Muc1 gene did not impair either expression levels of the genes that encode intestinal sterol efflux transporters Abcg5 and Abcg8 and fatty acid transporter Fatp4 or small intestinal transit rates. We conclude that physiological levels of the epithelial mucin produced by the Muc1 gene are necessary for normal intestinal uptake and absorption of cholesterol in mice. Our study implies that because cholesterol absorption efficiency is reduced by approximately 50% in Muc1-deficient mice, there may be one or more additional pathways for cholesterol absorption.  相似文献   

15.
The activity of phosphorylase a was measured in isolated hepatocytes from fed lean and ob/ob mice after addition of vasopressin, angiotensin, phenylephrine and glucagon. The binding of these hormones to purified liver plasma membranes was also determined. In hepatocytes of ob/ob mice, no increase in phosphorylase a was measured after addition of vasopressin, whereas the other hormones promoted an increase in the activity of the enzyme. No specific vasopressin receptors could be measured on purified liver plasma membrane of ob/ob mice. A decrease in the number of receptors for angiotensin and glucagon, without modification of the affinity, was also observed. No restoration of the number of vasopressin receptors was observed in liver of ob/ob mice starved for 3 days or in younger (5-6 weeks) animals. Vasopressin receptors and vasopressin-stimulated adenylate cyclase, measured on purified kidney medulla membranes, were similar in both lean and ob/ob mice. The data indicate a selective lack of vasopressin receptors and metabolic response in liver of the ob/ob mouse.  相似文献   

16.
Resistin and resistin-like molecules (RELMs) are a family of proteins reportedly related to insulin resistance and inflammation. Because the serum concentration and intestinal expression level of RELMbeta were elevated in insulin-resistant rodent models, in this study we investigated the effect of RELMbeta on insulin signaling and metabolism using transgenic mice and primary cultured hepatocytes. First, transgenic mice with hepatic RELMbeta overexpression were shown to exhibit significant hyperglycemia, hyperlipidemia, fatty liver, and pancreatic islet enlargement when fed a high fat diet. Hyperinsulinemic glucose clamp showed a decreased glucose infusion rate due to increased hepatic glucose production. In addition, the expression levels of IRS-1 and IRS-2 proteins as well as the degrees of insulin-induced phosphatidylinositol 3-kinase and Akt activations were attenuated in RELMbeta transgenic mice. Similar down-regulations of IRS-1 and IRS-2 proteins were observed in primary cultured hepatocytes chronically treated (for 24 h) with RELMbeta, suggesting the insulin resistance-inducing effect of RELMbeta to be direct. Furthermore, it was shown that RELMbeta acutely and markedly activates ERK and p38, while weakly activating JNK, in primary cultured hepatocytes. This increased basal p38 phosphorylation level was also observed in the livers of RELMbeta transgenic mice. In conclusion, RELMbeta, a gut-derived hormone, impairs insulin signaling probably via the activations of classic MAPKs, and increased expression of RELMbeta may be involved in the pathogenesis of glucose intolerance and hyperlipidemia in some insulin-resistant models. Thus, RELMbeta is a potentially useful marker for assessing insulin resistance and may also be a target for future novel anti-diabetic agents.  相似文献   

17.
Our objective was to investigate the potential roles of CCN1 in the inflammation and macrophage infiltration of nonalcoholic fatty liver disease (NAFLD). The regulation of hepatic CCN1 expression was investigated in vitro with murine primary hepatocytes treated with free fatty acids or lipopolysaccharide (LPS) and in vivo with high-fat (HF) diet-fed mice or ob/ob mice. CCN1 protein and a liver-specific CCN1 expression plasmid were administered to mice fed a normal diet (ND) or HF diet. Myeloid-derived macrophages and RAW264.7 cells were also treated with CCN1 in vitro to determine the chemotactic effects of CCN1 on macrophages. LPS treatment significantly increased hepatic CCN1 expression in HF diet-fed mice and ob/ob mice. LPS and FFAs induced CCN1 expression in primary murine hepatocytes in vitro through the TLR4/MyD88/AP-1 pathway. CCN1 protein and overexpression of CCN1 in the liver induced more severe hepatic inflammation and macrophage infiltrates in HF mice than in ND mice. CCN1 recruited macrophages through activation of the Mek/Erk signaling pathway in myeloid-derived macrophages and RAW264.7 cells in vitro. Endotoxin and FFA-induced CCN1 expression in hepatocytes is involved in the hepatic proinflammatory response and macrophage infiltration in murine NAFLD.  相似文献   

18.
Elongation of very long chain fatty acids (ELOVL)5 is one of seven mammalian fatty acid condensing enzymes involved in microsomal fatty acid elongation. To determine the in vivo substrates and function of ELOVL5, we generated Elovl5(-/-) mice. Studies using liver microsomal protein from wild-type and knockout mice demonstrated that the elongation of gamma-linolenic (C18:3, n-6) to dihomo-gamma-linolenic (C20:3, n-6) and stearidonic (C18:4, n-3) to omega3-arachidonic acid (C20:4, n-3) required ELOVL5 activity. Tissues of Elovl5(-/-) mice accumulated the C18 substrates of ELOVL5 and the levels of the downstream products, arachidonic acid (C20:4, n-6) and docosahexaenoic acid (DHA, C22:6, n-3), were decreased. A consequence of decreased cellular arachidonic acid and DHA concentrations was the activation of sterol regulatory element-binding protein (SREBP)-1c and its target genes involved in fatty acid and triglyceride synthesis, which culminated in the development of hepatic steatosis in Elovl5(-/-) mice. The molecular and metabolic changes in fatty acid metabolism in Elovl5(-/-) mice were reversed by dietary supplementation with arachidonic acid and DHA. These studies demonstrate that reduced ELOVL5 activity leads to hepatic steatosis, and endogenously synthesized PUFAs are key regulators of SREBP-1c activation and fatty acid synthesis in livers of mice.  相似文献   

19.
Triacylglycerols (TG) are the major storage molecules of metabolic energy and fatty acids in several tissues. The final step in TG biosynthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Lack of whole body DGAT1 is associated with reduced lipid-induced inflammation. Since one major component of atherosclerosis is chronic inflammation we hypothesized that DGAT1 deficiency might ameliorate atherosclerotic lesion development. We therefore crossbred Apolipoprotein E-deficient (ApoE(-/-)) mice with Dgat1(-/-) mice. ApoE(-/-) and ApoE(-/-)Dgat1(-/-) mice were fed Western-type diet (WTD) for 9weeks and thereafter examined for plaque formation. The mean atherosclerotic lesion area was substantially reduced in ApoE(-/-)Dgat1(-/-) compared with ApoE(-/-) mice in en face and aortic valve section analyses. The reduced lesion size was associated with decreased cholesterol uptake and absorption by the intestine, reduced plasma TG and cholesterol concentrations and increased cholesterol efflux from macrophages. The expression of adhesion molecules was reduced in aortas of ApoE(-/-)Dgat1(-/-) mice, which might be the reason for less migration capacities of monocytes and macrophages and the observed decreased amount of macrophages within the plaques. From our results we conclude that the lack of DGAT1 is atheroprotective, implicating an additional application of DGAT1 inhibitors with regard to maintaining cholesterol homeostasis and attenuating atherosclerosis.  相似文献   

20.
To test the hypothesis that leukocyte infiltration mediated by intercellular adhesion molecule (ICAM)-1 is involved in early alcohol-induced liver injury, male wild-type or ICAM-1 knockout mice were fed a high-fat liquid diet with either ethanol or isocaloric maltose-dextrin for 4 wk. There were no differences in mean urine alcohol concentrations between the groups fed ethanol. Alcohol administration significantly increased liver size and serum alanine aminotransferase levels in wild-type mice over high-fat controls, effects that were blunted significantly in ICAM-1 knockout mice. Dietary ethanol caused severe steatosis, mild inflammation, and focal necrosis in livers from wild-type mice. Furthermore, livers from wild-type mice fed ethanol showed significant increases in the number of infiltrating leukocytes, which were predominantly lymphocytes. These pathological changes were blunted significantly in ICAM-1 knockout mice. Tumor necrosis factor (TNF)-alpha mRNA expression was increased in wild-type mice fed ethanol but not in ICAM-1 knockout mice. These data demonstrate that ICAM-1 and infiltrating leukocytes play important roles in early alcohol-induced liver injury, most likely by mechanisms involving TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号