首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.  相似文献   

2.
As for the majority of neurodegenerative diseases, pathological mechanisms of amyotrophic lateral sclerosis (ALS) have been challenging to study due to the difficult access to alive patients' cells. Induced pluripotent stem cells (iPSCs) offer a useful in vitro system for modelling human diseases. iPSCs can be theoretically obtained by reprogramming any somatic tissue although fibroblasts (FB) remain the most used cells. However, reprogramming peripheral blood cells (PB) may offer significant advantages. In order to investigate whether the choice of starting cells may affect reprogramming and motor neuron (MNs) differentiation potential, we used both FB and PB from a same C9ORF72-mutated ALS patient to obtain iPSCs and compared several hallmarks of the pathology. We found that both iPSCs and MNs derived from the two tissues showed identical properties and features and can therefore be used interchangeably, giving the opportunity to easily obtain iPSCs from a more manageable source of cells, such as PB.  相似文献   

3.
Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat‐dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA. We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci.  相似文献   

4.
应用兰州生物制品研究所生产之精制人白细胞干扰素治疗丙型肝炎的病例对照研究结果表明,治疗组55.6%(15/27例)呈完全反应,44.4%(12/27例)呈部分反应,对照组22.2%(6/27例)完全反应,74.1%(20/27例)部分反应,1例无反应。治疗组HCVRNA转阴率(55.6%)明显高于对照组(22.2%),P<0.05。  相似文献   

5.
6.
7.
8.
Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms   总被引:9,自引:0,他引:9  
Cytochrome P450 (CYP) 2C8 and 2C9 are polymorphic enzymes. The CYP2C8*3 and CYP2C9*2 are the major variant alleles in Caucasian populations. The enzymes encoded by these variant alleles have impaired function for the metabolism of several drug substrates. In the present study 1468 subjects that were used as population-based controls in the Stockholm Heart Epidemiology Program (SHEEP) were genotyped by allelic discrimination using a 5'-nuclease assay for CYP2C8*1, 2C8*3, 2C9*1, 2C9*2, and 2C9*3 variant alleles in which the frequencies appeared to be 0.91, 0.095, 0.83, 0.11, and 0.066, respectively. Approximately, 96% of the subjects with CYP2C8*3 allele also carried a CYP2C9*2 and 85% of the subjects that had CYP2C9*2 variant also carried a CYP2C8*3. The number of subjects carrying both of the CYP2C8*1*3 and CYP2C9*1*2 was 4.5-fold higher than expected. This strong association may be of importance especially for the metabolism of common substrates of CYP2C8 and CYP2C9 like arachidonic acid that produces physiologically active metabolites.  相似文献   

9.
The arachidonic acid metabolizing CYP enzymes with prominent roles in vascular regulation are epoxygenases of the two gene family which generate epoxyeicosatrienoic acids. Carriers of CYP2C9 mutant alleles exhibit a diminished CYP2C9 metabolic capacity leading to decreased endothelium-derived hyperpolarizing factors (EDHF) synthesis and an increased risk for atherosclerosis. We investigated whether the polymorphisms of CYP2C9/19 are related with atherosclerosis. We examined 108 patients having angioraphically > or =70 coronary artery narrowing and 90 healthy controls. CYPC2C9/19*2 and CYP2C9/19*3 alleles were investigated in both patients and controls by a real time PCR instrument. There was no significant difference in the distribution of the CYP2C9*2/*3 alleles between cases and the controls. We found that smoker patients having CYP2C9*2 heterozygote genotype have 3.7-fold risk of developing atherosclerosis. CYP2C19*3 heterozygote alleles are more frequent in patients than in controls (10.2%, 5.6% respectively) and it is related with a three-fold risk of atherosclerosis (odds ratio (OR) = 3.75, confidence interval (CI) = 0.75-18.65). It becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. This inter-subject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification processes, e.g., cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development such as atherosclerosis.  相似文献   

10.
Quantitative structure-activity relationships (QSARs) within a series of cytochrome P450 2C9 (CYP2C9) and cytochrome P450 2C19 (CYP2C19) inhibitors are reported. In particular, it is noted that compound lipophilicity, in the form of log P values (where P is the octanol/water partition coefficient), is an important factor in explaining the variation in inhibitory potency within these series of compounds, many of which also act as substrates for the respective enzymes. In addition, there is a role for hydrogen bonding and π-π stacking interactions within the P450 active site which represent secondary factors in the binding processes of these compounds.  相似文献   

11.
12.
三核苷酸重复与神经系统遗传病的关系引起了许多科研工作者的关注,介绍了近年来与三核苷酸重复相关的神经系统遗传病致病基因克隆的研究进展,并对其可能的致病机理作了综述.  相似文献   

13.
近年来骨组织工程技术迅猛发展,小鼠成肌细胞C2C12因其来源广泛等优点可望成为有效的种子细胞应用于组织工程. 然而,对于C2C12细胞的成骨分化机制仍需深入研究. 为了观察Sonic hedgehog(Shh)信号通路对骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9)诱导的C2C12细胞成骨分化的影响,构建过表达腺病毒Ad Shh,并作用于BMP9处理的C2C12细胞,检测碱性磷酸酶(alkaline phosphatase , ALP)的变化,茜素红S染色检测钙盐沉积,RT PCR检测Shh、骨桥蛋白(osteopontin,OPN)、骨钙素(osteocalcin,OCN)、Runx2、Dlx5、Id1和Id2基因表达,Western印迹检测Shh、OPN、OCN、Runx2和Dlx5的蛋白质表达,Micro-CT和H&E染色检测裸鼠皮下异位成骨包块情况. 结果表明,活化Shh信号通路可促进BMP9诱导的C2C12细胞早晚期成骨分化,以及裸鼠皮下异位成骨.体内外实验证明,Shh信号通路能促进BMP9诱导小鼠成肌细胞C2C12向成骨分化.  相似文献   

14.
The anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase responsible for controlling cell cycle transitions, is a multisubunit complex assembled from 13 different proteins. Numerous APC/C subunits incorporate multiple copies of the tetratricopeptide repeat (TPR). Here, we report the crystal structure of Schizosaccharomyces pombe Cut9 (Cdc16/Apc6) in complex with Hcn1 (Cdc26), showing that Cdc16/Cut9 is a contiguous TPR superhelix of 14 TPR units. A C-terminal block of TPR motifs interacts with Hcn1, whereas an N-terminal TPR block mediates Cdc16/Cut9 self-association through a homotypic interface. This dimer interface is structurally related to the N-terminal dimerization domain of Cdc27, demonstrating that both Cdc16/Cut9 and Cdc27 form homo-dimers through a conserved mechanism. The acetylated N-terminal Met residue of Hcn1 is enclosed within a chamber created from the Cut9 TPR superhelix. Thus, in complex with Cdc16/Cut9, the N-acetyl-Met residue of Hcn1, a putative degron for the Doa10 E3 ubiquitin ligase, is inaccessible for Doa10 recognition, protecting Hcn1/Cdc26 from ubiquitin-dependent degradation. This finding may provide a structural explanation for a mechanism to control the stoichiometry of proteins participating in multisubunit complexes.  相似文献   

15.
Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development.  相似文献   

16.
Several human neurodegenerative disorders are caused by the expansion of polymorphic trinucleotide repeat regions. Many of these loci are functional short tandem repeats (STRs) located in brain-expressed genes, and their study is thus relevant from both a medical and an evolutionary point of view. The aims of our study are to infer the comparative pattern of variation and evolution of this set of loci in order to show species-specific features in this group of STRs and on their potential for expansion (therefore, an insight into evolutionary medicine) and to unravel whether any human-specific feature may be identified in brain-expressed genes involved in human disease. We analyzed the variability of the normal range of seven expanding STR CAG/CTG loci (SCA1, SCA2, SCA3-MJD, SCA6, SCA8, SCA12, and DRPLA) and two nonexpanding polymorphic CAG loci (KCNN3 and NCOA3) in humans, chimpanzees, gorillas, and orangutans. The study showed a general conservation of the repetitive tract and of the polymorphism in the four species and high heterogeneity among loci distributions. Humans present slightly larger alleles than the rest of species but a more relevant difference appears in variability levels: Humans are the species with the largest variance, although only for the expanding loci, suggesting a relationship between variability levels and expansion potential. The sequence analysis shows high levels of sequence conservation among species, a lack of correspondence between interruption patterns and variability levels, and signs of conservative selective pressure for some of the STR loci. Only two loci (SCA1 and SCA8) show a human specific distribution, with larger alleles than the rest of species. This could account, at the same time, for a human-specific trait and a predisposition to disease through expansion.This article contains online supplementary material.  相似文献   

17.
Gastric cancer is one of the leading causes of cancer‐related deaths worldwide. Current biomarkers used in the clinic do not have sufficient sensitivity for gastric cancer detection. To discover new and better biomarkers, protein profiling on plasma samples from 25 normal, 15 early‐stage and 21 late‐stage cancer was performed using an iTRAQ‐LC‐MS/MS approach. The level of C9 protein was found to be significantly higher in gastric cancer compared with normal subjects. Immunoblotting data revealed a congruent trend with iTRAQ results. The discriminatory power of C9 between normal and cancer states was not due to inter‐patient variations and was independent from gastritis and Helicobacter pylori status of the patients. C9 overexpression could also be detected in a panel of gastric cancer cell lines and their conditioned media compared with normal cells, implying that higher C9 levels in plasma of cancer patients could be attributed to the presence of gastric tumor. A subsequent blind test study on a total of 119 plasma samples showed that the sensitivity of C9 could be as high as 90% at a specificity of 74%. Hence, C9 is a potentially useful biomarker for gastric cancer detection.  相似文献   

18.
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19.  相似文献   

19.
大环内酯类抗生素自上市以来一直用于治疗呼吸系统等疾病,但随着该类药物的广泛应用,耐药菌日益增多。为此,研究者们一 直致力于半合成大环内酯类抗生素的研究,希望开发出对耐药菌有效、抗菌谱广的半合成衍生物。综述近年来对大环内酯9 位羰基结构 修饰的研究进展,并着重介绍一些活性较好的化合物。  相似文献   

20.
DNA的简单串联重复扩展与遗传病   总被引:2,自引:0,他引:2  
目前已知有17种遗传病或染色体脆性位点是由简单串联重复DNA拷贝数增加引起的.本文综述了这些重复扩展的特点,可能的分子机制及致病机理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号