首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Canine rabies is a neglected disease causing 55,000 human deaths worldwide per year, and 99% of all cases are transmitted by dog bites. In N''Djaména, the capital of Chad, rabies is endemic with an incidence of 1.71/1,000 dogs (95% C.I. 1.45–1.98). The gold standard of rabies diagnosis is the direct immunofluorescent antibody (DFA) test, requiring a fluorescent microscope. The Centers for Disease Control and Prevention (CDC, Atlanta, United States of America) developed a histochemical test using low-cost light microscopy, the direct rapid immunohistochemical test (dRIT).

Methodology/Principal Findings

We evaluated the dRIT in the Chadian National Veterinary Laboratory in N''Djaména by testing 35 fresh samples parallel with both the DFA and dRIT. Additional retests (n = 68 in Chad, n = 74 at CDC) by DFA and dRIT of stored samples enhanced the power of the evaluation. All samples were from dogs, cats, and in one case from a bat. The dRIT performed very well compared to DFA. We found a 100% agreement of the dRIT and DFA in fresh samples (n = 35). Results of retesting at CDC and in Chad depended on the condition of samples. When the sample was in good condition (fresh brain tissue), we found simple Cohen''s kappa coefficient related to the DFA diagnostic results in fresh tissue of 0.87 (95% C.I. 0.63–1) up to 1. For poor quality samples, the kappa values were between 0.13 (95% C.I. −0.15–0.40) and 0.48 (95% C.I. 0.14–0.82). For samples stored in glycerol, dRIT results were more likely to agree with DFA testing in fresh samples than the DFA retesting.

Conclusion/Significance

The dRIT is as reliable a diagnostic method as the gold standard (DFA) for fresh samples. It has an advantage of requiring only light microscopy, which is 10 times less expensive than a fluorescence microscope. Reduced cost suggests high potential for making rabies diagnosis available in other cities and rural areas of Africa for large populations for which a capacity for diagnosis will contribute to rabies control.  相似文献   

2.
Rabies is a widespread zoonotic disease responsible for approximately 55,000 human deaths/year. The direct fluorescent antibody test (DFAT) and the mouse inoculation test (MIT) used for rabies diagnosis, have high sensitivity and specificity, but are expensive and time-consuming. These disadvantages and the identification of new strains of the virus encourage the use of new techniques that are rapid, sensitive, specific and economical for the detection and research of the Rabies Virus (RABV). Real-time RT-PCR, phylogeographic analysis, proteomic assays and DNA recombinant technology have been used in research laboratories. Together, these techniques are effective on samples with low virus titers in the study of molecular epidemiology or in the identification of new disease markers, thus improving the performance of biological assays. In this context, modern advances in molecular technology are now beginning to complement more traditional approaches and promise to revolutionize the diagnosis of rabies. This brief review presents some of the recent molecular tools used for RABV analysis, with emphasis on rabies diagnosis and research.  相似文献   

3.
Presently the gold standard diagnostic technique for rabies is the direct immunofluorescence assay (dFA) which is very expensive and requires a high level of expertise. There is a need for more economical and user friendly tests, particularly for use in developing countries. We have established one such test called the direct rapid immunohistochemical test (dRIT) for diagnosis of rabies using brain tissue. The test is based on capture of rabies nucleoprotein (N) antigen in brain smears using a cocktail of biotinylated monoclonal antibodies specific for the N protein and color development by streptavidin peroxidase-amino ethyl carbazole and counter staining with haematoxollin. The test was done in parallel with standard FAT dFA using 400 brain samples from different animals and humans. The rabies virus N protein appears under light microscope as reddish brown particles against a light blue background. There was 100 % correlation between the results obtained by the two tests. Also, interpretation of results by dRIT was easier and only required a light microscope. To conclude, this newly developed dRIT technique promises to be a simple, cost effective diagnostic tool for rabies and will have applicability in field conditions prevalent in developing countries.  相似文献   

4.
Rabies virus (RABV) causes a fatal infectious disease, but effective protection may be achieved with the use of rabies immunoglobulin and a rabies vaccine. Virus-neutralizing antibodies (VNA), which play an important role in the prevention of rabies, are commonly evaluated by the RABV neutralizing test. For determining serum VNA levels or virus titers during the RABV vaccine manufacturing process, reliability of the assay method is highly important and mainly dependent on the diagnostic antibody. Most diagnostic antibodies are monoclonal antibodies (mAbs) made from hybridoma cell lines and are costly and time consuming to prepare. Thus, production of a cost-effective mAb for determining rabies VNA levels or RABV titers is needed. In this report, we describe the prokaryotic production of a RABV-specific single-chain variable fragment (scFv) protein with a His-tag (scFv98H) from a previously constructed plasmid in a bioreactor, including the purification and refolding process as well as the functional testing of the protein. The antigen-specific binding characteristics, affinity, and relative affinity of the purified protein were tested. The scFv98H antibody was compared with a commercial RABV nucleoprotein mAb for assaying the VNA level of anti-rabies serum samples from different sources or testing the growth kinetics of RABV strains for vaccine manufactured in China. The results indicated that scFv98H may be used as a novel diagnostic tool to assay VNA levels or virus titers and may be used as an alternative for the diagnostic antibody presently employed for these purposes.  相似文献   

5.
In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions.  相似文献   

6.
7.

Objectives

Domestic dogs are the main reservoir of rabies virus (RABV) infection in Nigeria, thus surveillance of rabies in dog populations is crucial in order to understand the patterns of spread of infection and ultimately devise an appropriate rabies control strategy. This study determined the presence of lyssavirus antigen in brain tissues and anti-rabies antibodies in sera of apparently healthy and suspected-rabid dogs slaughtered for human consumption at local markets in South-Eastern Nigeria.

Results

Our findings demonstrated that 8.3% (n?=?23) of brain tissues were lyssavirus positive and 2.5% (n?=?25) of sera had rabies antibody levels as percentage blocking of 70% and above correlating with a cut-off value?≥?0.5 IU/mL in the fluorescent antibody neutralization test. There was an inverse correlation between lyssavirus positivity and rabies antibody levels confirming that infected individuals most often do not develop virus neutralizing antibodies to the disease. The low percentage of rabies antibodies in this dog population suggests a susceptible population at high risk to RABV infection. These findings highlight a huge challenge to national rabies programs and subsequent elimination of the disease from Nigeria, considering that majority of dogs are confined to rural communal areas, where parenteral dog vaccination is not routinely undertaken.
  相似文献   

8.
9.
A simple and rapid immunochromatographic test kit for rabies diagnosis   总被引:1,自引:0,他引:1  
In rabies endemic countries, funds and infrastructure are often insufficient to employ the approved gold standard for the definitive diagnosis of rabies: the direct fluorescent test. In the present study, two types (type 1 and 2) of an ICT kit were evaluated for detection of rabies. These were developed using monoclonal antibodies which recognize epitope II and III of the nucleoprotein of rabies virus. Both kits specifically detected all rabies virus strains and there was no cross reactivity with Lyssaviruses (Lagos, Mokola and Duvenhage), Rhabdovirus (VSV and Oita 296/1972) and other common canine-pathogenic viruses. In type 1, a single type of monoclonal antibody was used. It was capable of detecting recombinant nucleoprotein and showed sensitivity of 95.5% (42/44) and specificity of 88.9% (32/36) using brain samples from rabid dogs. In contrast, type 2 which was made of two different monoclonal antibodies had a lower sensitivity of 93.2% (41/44) and higher specificity of 100% (36/36). These ICT kits provide a simple and rapid method for rabies detection. They need neither cold chain for transportation nor complicated training for personnel. This diagnostic test is suitable for rabies screening, particularly in areas with a high prevalence of rabies and where the fluorescent antibody test is not available.  相似文献   

10.
Nasopharyngeal secretions (NPS) from 121 (110 pediatric) patients with acute respiratory infections were examined for respiratory virus detection by: i) conventional virus isolation in cell cultures (CC) using HEp-2, LLC-MK2, and MDCK cells; ii) rapid virus isolation using shell vial cultures (SVC) of a mixture (MIX) of mink lung epithelial cells (Mv1Lu) and human lung carcinoma (A549) cells in comparison to LLC-MK2 and MDCK cells; iii) direct fluorescent antibody (DFA) assay on NPS cells. A pool of monoclonal antibodies (MAbs) to influenzavirus A and B, parainfluenzavirus types 1 to 3, adenoviruses and respiratory syncytial virus (RSV), as well as single MAbs to the same viruses, were used for virus identification in all three procedures. Results on 101 NPS examined in parallel showed a sensitivity of 89.5%, 73.7%, and 81.6% for CC, SVC, and DFA, respectively, with the relevant negative predictive values of 94.0%, 86.3%, and 90.0%. Specificity and positive predictive values were 100%. However, the combination of DFA and SVC gave best results in terms of sensitivity (94.7%) and negative predictive value (95.5%). Use of the new MIX cell culture system in the SVC procedure enhanced virus detection, while use of the MAb pool allowed prompt identification of negative samples and saving of reagents and time for all three procedures. The combination of DFA and SVC allows diagnosis of the large majority of viral respiratory infections within 48h, while conventional virus isolation on CC may be limited to laboratories involved in research and epidemiological studies.  相似文献   

11.
Over two-thirds of the world''s population lives in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis (PEP) and over 55,000 deaths per year globally. A major goal in rabies virus (RABV) research is to develop a single-dose PEP that would simplify vaccination protocols, reduce costs associated with RABV prevention, and save lives. Protection against RABV infections requires virus neutralizing antibodies; however, factors influencing the development of protective RABV-specific B cell responses remain to be elucidated. Here we used a mouse model of IL-21 receptor-deficiency (IL-21R−/−) to characterize the role for IL-21 in RABV vaccine-induced immunity. IL-21R−/− mice immunized with a low dose of a live recombinant RABV-based vaccine (rRABV) produced only low levels of primary or secondary anti-RABV antibody response while wild-type mice developed potent anti-RABV antibodies. Furthermore, IL-21R−/− mice immunized with low-dose rRABV were only minimally protected against pathogenic RABV challenge, while all wild-type mice survived challenge, indicating that IL-21R signaling is required for antibody production in response to low-dose RABV-based vaccination. IL-21R−/− mice immunized with a higher dose of vaccine produced suboptimal anti-RABV primary antibody responses, but showed potent secondary antibodies and protection similar to wild-type mice upon challenge with pathogenic RABV, indicating that IL-21 is dispensable for secondary antibody responses to live RABV-based vaccines when a primary response develops. Furthermore, we show that IL-21 is dispensable for the generation of Tfh cells and memory B cells in the draining lymph nodes of immunized mice but is required for the detection of optimal GC B cells or plasma cells in the lymph node or bone marrow, respectively, in a vaccine dose-dependent manner. Collectively, our preliminary data show that IL-21 is critical for the development of optimal vaccine-induced primary but not secondary antibody responses against RABV infections.  相似文献   

12.
Although the cell-to-cell spread of many viruses in vitro is inhibited by antibody, the effect of antibody on such spread of rabies viruses is uncertain. Thus, we examined the effects of anti-rabies virus immune sera and monoclonal antibodies (MAbs) on the in vitro spread of pathogenic rabies viruses in neuronal and nonneuronal cells. Both anti-rabies virus immune sera and neutralizing antiglycoprotein MAbs inhibited the cell-to-cell spread of street rabies virus, challenge virus standard, and ERA rabies viruses in cultures of neuroblastoma cells and of nonneuronal BHK-21 and chicken embryo-related cells. Furthermore, the cell-to-cell spread of virus was inhibited by greater than or equal to 75% with less than 1 IU/ml of human antirabies immunoglobulin. Nonneutralizing antinucleocapsid MAbs did not inhibit viral spread. After the immune serum was removed from the monolayers, virus spread rapidly to uninfected cells. Thus, antibody controlled the cell-to-cell spread of the virus but did not eliminate it from the cultures. Because antibody was more effective in inhibiting viral spread in fibroblast and epithelioid cells than in neuroblastoma cells infected at a high multiplicity of infection, we suggest that the inhibition of viral cell-to-cell spread by antibody in vivo would more likely occur at an initial site of exposure and before nerves are infected.  相似文献   

13.
Common vampire bat populations distributed from Mexico to Argentina are important rabies reservoir hosts in Latin America. The aim of this work was to analyse the population structure of the rabies virus (RABV) variants associated with vampire bats in the Americas and to study their phylodynamic pattern within Argentina. The phylogenetic analysis based on all available vampire bat‐related N gene sequences showed both a geographical and a temporal structure. The two largest groups of RABV variants from Argentina were isolated from northwestern Argentina and from the central western zone of northeastern Argentina, corresponding to livestock areas with different climatic, topographic and biogeographical conditions, which determined their dissemination and evolutionary patterns. In addition, multiple introductions of the infection into Argentina, possibly from Brazil, were detected. The phylodynamic analysis suggests that RABV transmission dynamics is characterized by initial epizootic waves followed by local enzootic cycles with variable persistence. Anthropogenic interventions in the ecosystem should be assessed taking into account not only the environmental impact but also the potential risk of disease spreading through dissemination of current RABV lineages or the emergence of novel ones associated with vampire bats.  相似文献   

14.
Sixteen lots of rabies immune globulin (RIG) and six lots of rabies immune horse serum (RIS) from different producers were examined for rabies antibody by the standard mouse neutralization test (MNT) and the rapid fluorescent focus inhibition test (RFFIT). An equine rabies standard serum was assayed in parallel. In comparisons of RIS with this standard the MNT and RFFIT gave comparable results. In comparisons of RIG the antibody values in the MNT was two to ten times higher than that in the RFFIT in 15 out of 16 lots. The MNT and RFFIT are thus not fully comparable when measuring rabies antibodies in RIG. The choice of the titration method is obviously important in the measurement of the antibody concentration in RIG or RIS in IU against an equine rabies reference preparation. The described differences could have consequences for the use of RIG.  相似文献   

15.
Rabies remains a public health threat that kills approximately 59,000 people worldwide each year,most of which are from the developing countries of Africa and Asia where dog rabies are endemic.Therefore, developing an affordable and efficacious vaccine is crucial for rabies control in these countries. Interleukin(IL)-15, an immunoregulatory cytokine, is a pluripotent molecule with therapeutic potential, which targets many cell types and links the innate and adaptive immune system. In this study, IL-15 gene was cloned and inserted into the genome of a recombinant rabies virus(RABV) strain LBNSE(designated as LBNSE-IL15), and the effect of over-expression of IL-15 on the immunogenicity of RABV was investigated. It was found that mice vaccinated with LBNSEIL15 could induce significantly higher level of virus-neutralizing antibody(VNA) than those immunized with LBNSE, resulting in the higher protection after challenge. Further investigation was performed to find out the possible role of IL-15 plays in the process of antibody induction, and it was found that LBNSE-IL15 could enhance the maturation of dendritic cells(DCs) in immunized mice. Furthermore, the mice immunized with LBNSE-IL15 could promote the T_(FH) cells differentiation and the generation of germinal center B cells and plasma cells. Together, these data indicated that IL-15 could be a potential adjuvant in enhancing the immunogenicity of RABV, contributing to the development of more-efficacious rabies vaccines.  相似文献   

16.
The need to replace rabies immune globulin (RIG) as an essential component of rabies postexposure prophylaxis is widely acknowledged. We set out to discover a unique combination of human monoclonal antibodies (MAbs) able to replace RIG. Stringent criteria concerning neutralizing potency, affinity, breadth of neutralization, and coverage of natural rabies virus (RV) isolates and in vitro escape mutants were set for each individual antibody, and the complementarities of the two MAbs were defined at the onset. First, we identified and characterized one human MAb (CR57) with high in vitro and in vivo neutralizing potency and a broad neutralization spectrum. The linear antibody binding site was mapped on the RV glycoprotein as antigenic site I by characterizing CR57 escape mutants. Secondly, we selected using phage display a complementing antibody (CR4098) that recognized a distinct, nonoverlapping epitope (antigenic site III), showed similar neutralizing potency and breadth as CR57, and neutralized CR57 escape mutants. Reciprocally, CR57 neutralized RV variants escaping CR4098. Analysis of glycoprotein sequences of natural RV isolates revealed that the majority of strains contain both intact epitopes, and the few remaining strains contain at least one of the two. In vitro exposure of RV to the combination of CR57 and CR4098 yielded no escape mutants. In conclusion, a novel combination of human MAbs was discovered suitable to replace RIG.  相似文献   

17.
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.  相似文献   

18.
B cells secreting IgG antibodies, but not IgM, are thought to be solely responsible for vaccine-induced protection against rabies virus (RABV) infections in postexposure settings. In this report, we reinvestigated the potential for IgM to mediate protection in a mouse model of RABV vaccination. Immunocompetent mice immunized with an experimental live replication-deficient RABV-based vaccine produced virus neutralizing antibodies (VNAs) within 3 days of vaccination. However, mice unable to produce soluble IgM (sIgM−/−) did not produce VNAs until 7 days postimmunization. Furthermore, sIgM−/− mice were not protected against RABV infection when challenged 3 days postimmunization, while all wild-type mice survived challenge. Consistent with the lack of protection against pathogenic RABV challenge, approximately 50- to 100-fold higher viral loads of challenge virus were detected in the muscle, spinal cord, and brain of immunized sIgM−/− mice compared to control mice. In addition, IgG antibody titers in vaccinated wild-type and sIgM−/− mice were similar at all time points postimmunization, suggesting that protection against RABV challenge is due to the direct effects of IgM and not the influence of IgM on the development of effective IgG antibody titers. In all, early vaccine-induced IgM can limit dissemination of pathogenic RABV to the central nervous system and mediate protection against pathogenic RABV challenge. Considering the importance for the rapid induction of VNAs to protect against RABV infections in postexposure prophylaxis settings, these findings may help guide the development of a single-dose human rabies vaccine.  相似文献   

19.
Thirty-five monoclonal antibodies (MAbs) against glycoprotein (G protein) of the RC-HL strain of the rabies virus have been established. Using these MAbs, two antigenic sites (I and II) were delineated on the G protein of the RC-HL strain in a competitive binding assay. Of these, 34 MAbs recognized the epitopes on site IL Site II was further categorized into 10 subsites according to their patterns in a competitive binding assay. Each site II-specific MAb showed 5 to 23 nonreciprocal competitions. The reactivities of 35 MAbs to rabies and rabies-related viruses in an indirect immunofluorescent antibody test showed that six MAbs in group A binded to rabies and rabies-related viruses and eight MAbs in group E reacted only with rabies viruses, considering that the former represent the genus-specific of Lyssavirus and the latter are rabies virus-specific. From biological assays, 28 of the 35 MAbs showed neutralization activity, 31 showed hemagglutination inhibition (HI) activity, and 18 showed immunolysis (IL) activity. The MAbs recognizing neutralization epitopes fell into at least three groups: those exhibiting both HI and IL activity, those showing only HI activity, and those showing neither HI nor IL activity. All IL epitopes overlap with HA epitopes. Five of the nine MAbs which reacted with the antigen treated by sodium dodecyl sulfate in ELISA were not reduced, or reduced only slightly, in the titer. None of the MAbs reacted with 2-mercaptoethanol-treated antigen. Only one MAb that recognized site I reacted with the denatured G protein in a Western blotting assay, indicating that its epitope is linear. These results suggest that almost all of the epitopes on the G protein of the rabies virus are conformation-dependent and the G protein forms a complicated antigenic structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号