共查询到20条相似文献,搜索用时 0 毫秒
1.
Susanne Müller Sarah N. Strack Sarah E. Ryan Daniel B. Kearns John R. Kirby 《Applied and environmental microbiology》2015,81(1):203-210
Biofilm formation is a common mechanism for surviving environmental stress and can be triggered by both intraspecies and interspecies interactions. Prolonged predator-prey interactions between the soil bacterium Myxococcus xanthus and Bacillus subtilis were found to induce the formation of a new type of B. subtilis biofilm, termed megastructures. Megastructures are tree-like brachiations that are as large as 500 μm in diameter, are raised above the surface between 150 and 200 μm, and are filled with viable endospores embedded within a dense matrix. Megastructure formation did not depend on TasA, EpsE, SinI, RemA, or surfactin production and thus is genetically distinguishable from colony biofilm formation on MSgg medium. As B. subtilis endospores are not susceptible to predation by M. xanthus, megastructures appear to provide an alternative mechanism for survival. In addition, M. xanthus fruiting bodies were found immediately adjacent to the megastructures in nearly all instances, suggesting that M. xanthus is unable to acquire sufficient nutrients from cells housed within the megastructures. Lastly, a B. subtilis mutant lacking the ability to defend itself via bacillaene production formed megastructures more rapidly than the parent. Together, the results indicate that production of the megastructure facilitates B. subtilis escape into dormancy via sporulation. 相似文献
2.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation. 相似文献
3.
Sporulation of Bacillus subtilis 总被引:2,自引:0,他引:2
4.
5.
When suspended in a liquid starvation medium, exponentially growing Myxococcus xanthus sporulated within 3 days. These myxospores were similar to spores developed within fruiting bodies, as determined by electron microscopy and the production of spore-specific protein S. This liquid sporulation system may be useful as a means of preparing large quantities of myxospores and extracellular fluid for biochemical studies, including isolation of chemical signals produced during the sporulation process. 相似文献
6.
Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. 总被引:1,自引:0,他引:1 下载免费PDF全文
In-frame deletions of pilA and pilS were constructed in Myxococcus xanthus with a plasmid integration-excision strategy facilitated by sacB. sacB conferred sucrose sensitivity upon its M. xanthus host only when it lay in the same orientation as adjacent M. xanthus genes. Gene orientation also affected the efficiency of sucrose counterselection in the sucrose-sensitive strains. The deltapilA mutant lacked pili and social motility, while the deltapilS mutant showed no defect in either phenotype. 相似文献
7.
Chuandong Wang Xinlin Liu Peng Zhang Yan Wang Zhifeng Li Xun Li Renqing Wang Zhaohui Shang Jingen Yan Haifeng He Jing Wang Wei Hu Yuezhong Li 《Environmental microbiology》2019,21(12):4755-4772
Myxococcus xanthus kills susceptible bacteria using myxovirescin A (TA) during predation. However, whether prey cells in nature can escape M. xanthus by developing resistance to TA is unknown. We observed that many field-isolated Bacillus licheniformis strains could survive encounters with M. xanthus, which was correlated to their TA resistance. A TA glycoside was identified in the broth of predation-resistant B. licheniformis J32 co-cultured with M. xanthus, and a glycosyltransferase gene (yjiC) was up-regulated in J32 after the addition of TA. Hetero-expressed YjiC-modified TA to a TA glucoside (TA-Gluc) by conjugating a glucose moiety to the C-21 hydroxyl group, and the resulting compound was identical to the TA glycoside present in the co-culture broth. TA-Gluc exhibited diminished bactericidal activity due to its weaker binding with LspA, as suggested by in silico docking data. Heterologous expression of the yjiC gene conferred both TA and M. xanthus-predation resistance to the host Escherichia coli cells. Furthermore, under predatory pressure, B. licheniformis Y071 rapidly developed predation resistance by acquiring TA resistance through the overexpression of yjiC and lspA genes. These results suggest that M. xanthus predation resistance in B. licheniformis is due to the TA deactivation by glucosylation, which is induced in a predator-mediated manner. 相似文献
8.
Optimal conditions for two-dimensional gel electrophoresis of total cellular proteins from Myxococcus xanthus were established. Using these conditions, we analyzed protein patterns of heat-shocked M. xanthus cells. Eighteen major spots and 15 minor spots were found to be induced by heat shock. From N-terminal sequences of 15 major spots, DnaK, GroEL, GroES, alkyl hydroperoxide reductase, aldehyde dehydrogenase, succinyl coenzyme A (CoA) synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit were identified. Three of the 18 major spots had an identical N-terminal sequence, indicating that they may be different forms of the same protein. Although a DnaK homologue, SglK, has been identified in M. xanthus (R. M. Weimer, C. Creghton, A. Stassinopoulos, P. Youderian, and P. L. Hartzell, J. Bacteriol. 180:5357-5368, 1998; Z. Yang, Y. Geng, and W. Shi, J. Bacteriol. 180:218-224, 1998), SglK was not induced by heat shock. In addition, there were seven substitutions within the N-terminal 30-residue sequence of the newly identified DnaK. This is the first report to demonstrate that succinyl CoA synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit are heat shock inducible. 相似文献
9.
10.
Cynthia L. Darnell Janet M. Wilson Nitija Tiwari Ernesto J. Fuentes John R. Kirby 《Journal of bacteriology》2014,196(17):3160-3168
Chemosensory systems are complex, highly modified two-component systems (TCS) used by bacteria to control various biological functions ranging from motility to sporulation. Chemosensory systems and TCS both modulate phosphorelays comprised of histidine kinases and response regulators, some of which are single-domain response regulators (SD-RRs) such as CheY. In this study, we have identified and characterized the Che7 chemosensory system of Myxococcus xanthus, a common soil bacterium which displays multicellular development in response to stress. Both genetic and biochemical analyses indicate that the Che7 system regulates development via a direct interaction between the SD-RR CheY7 and a HEAT repeat domain-containing protein, Cpc7. Phosphorylation of the SD-RR affects the interaction with its target, and residues within the α4-β5-α5 fold of the REC domain govern this interaction. The identification of the Cpc7 interaction with CheY7 extends the diversity of known targets for SD-RRs in biological systems. 相似文献
11.
12.
1. When Bacillus subtilis was grown in a medium in which sporulation occurred well-defined morphological changes were seen in thin sections of the cells. 2. Over a period of 7.5hr. beginning 2hr. after the initiation of sporulation the following major stages were observed: axial nuclear-filament formation, spore-septum formation, release of the fore-spore within the cell, development of the cortex around the fore-spore, the laying down of the spore coat and the completion of the corrugated spore coat before release of the spore from the mother cell. 3. The appearance of refractile bodies and 2,6-dipicolinic acid and the development of heat-resistance began between 5 and 6.5hr. after initiation of sporulation. 4. The appearance of 2,6-dipicolinic acid and the onset of refractility appeared to coincide with a diminution of electron density in the spore core and cortex. 5. Heat-resistance was associated with the terminal stage, the completion of the spore coat. 6. The spore coat was composed of an inner and an outer layer, each of which consisted of three or four electron-dense laminae. 7. Serial sections through cells at an early stage of sporulation showed that the membranes of each spore septum were always continuous with the membranes of a mesosome, which was itself in close contact with the bacterial or spore nucleoid. 8. These changes were correlated with biochemical events occurring during sporulation. 相似文献
13.
Sporulation of Bacillus subtilis 168 was studied in chemostat cultures. Sporulation occurred at high frequency under limitation of growth by glucose or the nitrogen source in minimal medium, whereas rates of sporulation were low for Mg(2+), phosphate, citrate, or tryptophan limitation. Sporulation was found at all growth rates tested, and the incidence of spores increased with decrease in growth rate of the culture. Within the range of growth rates up to the maximum obtainable with the defined medium, no threshold effect of growth rate on sporulation was observed. By studying transient states, it was possible to determine the time taken for the appearance of a refractile spore after initiation of a cell to sporulation. Under conditions of glucose limitation, cells were found to be committed to sporulation as soon as they were initiated. In nitrogen-limited cultures, however, a partial relief of nitrogen limitation prevented the development of spores during the first hour after initiation. The results of experiments with multistep changes in dilution rate of a chemostat culture indicate that initiation to sporulation is probably restricted to a particular point in the cell division cycle. 相似文献
14.
15.
Haiyang Zhang Zalman Vaksman Douglas B. Litwin Peng Shi Heidi B. Kaplan Oleg A. Igoshin 《PLoS computational biology》2012,8(9)
Myxococcus xanthus cells self-organize into periodic bands of traveling waves, termed ripples, during multicellular fruiting body development and predation on other bacteria. To investigate the mechanistic basis of rippling behavior and its physiological role during predation by this Gram-negative soil bacterium, we have used an approach that combines mathematical modeling with experimental observations. Specifically, we developed an agent-based model (ABM) to simulate rippling behavior that employs a new signaling mechanism to trigger cellular reversals. The ABM has demonstrated that three ingredients are sufficient to generate rippling behavior: (i) side-to-side signaling between two cells that causes one of the cells to reverse, (ii) a minimal refractory time period after each reversal during which cells cannot reverse again, and (iii) physical interactions that cause the cells to locally align. To explain why rippling behavior appears as a consequence of the presence of prey, we postulate that prey-associated macromolecules indirectly induce ripples by stimulating side-to-side contact-mediated signaling. In parallel to the simulations, M. xanthus predatory rippling behavior was experimentally observed and analyzed using time-lapse microscopy. A formalized relationship between the wavelength, reversal time, and cell velocity has been predicted by the simulations and confirmed by the experimental data. Furthermore, the results suggest that the physiological role of rippling behavior during M. xanthus predation is to increase the rate of spreading over prey cells due to increased side-to-side contact-mediated signaling and to allow predatory cells to remain on the prey longer as a result of more periodic cell motility. 相似文献
16.
Ethanol extracts of Myxococcus xanthus contained several substances, referred to as autocides, which were bactericidal to the producing strain but showed no activity against other bacteria. The autocides were produced by growing cells and remained largely cell bound throughout the growth cycle; ca. 5% of the autocidal activity was found in the supernatant fluid at the time cell lysis began. The autocides were separated by sequential-column and thin-layer chromatography into five active fractions (AM I through AM V). Each of the fractions was at least 20 times more active against M. xanthus than against the other gram-negative or gram-positive bacteria tested. AM I, AM IV, and AM V were inactive against yeasts, whereas a mixture of fractions AM II and AM III was active against Rhodotorula sp. At low concentrations, AM I reversibly inhibited the growth of M. xanthus; at higher concentrations of AM I, the cells lysed within 1 h. The lowest concentration of AM IV that showed any activity caused rapid cell death and lysis. The mode of action of the major autocide, AM V, was different from that of AM I and AM IV. During the initial 2 h of treatment, the viable count of M. xanthus cells remained constant; during the next few hours killing occurred without lysis; within 24 h lysis was complete. The autocidal activity of each of the fractions was expressed when the cells were suspended in buffer, as well as in growth medium. The possible role of autocides in developmental lysis of M. xanthus is discussed. 相似文献
17.
C Ruiz A Ruiz-Bravo G Alvarez de Cienfuegos A Ramos-Cormenzana 《Journal of general microbiology》1985,131(8):2035-2039
Glycerol-induced myxospores of Myxococcus xanthus caused non-specific modulation of humoral and cellular immune responses in laboratory animals. The number of cells which formed specific haemolysins in spleens of mice immunized with sheep erythrocytes was increased when 0.5 X 10(8) myxospores were inoculated 2 d after the erythrocytes, and decreased when myxospores were injected 2 d before or at the same time as the erythrocytes. Both the IgG primary response and the secondary response to erythrocytes were decreased in rabbits after pretreatment with 2 X 10(8) myxospores per rabbit. Delayed-type hypersensitivity to sheep erythrocytes was also suppressed in mice after intraperitoneal (i.p.) injection of 0.3 X 10(8) myxospores. One day after i.p. injection of myxospores, neither an inflammatory response nor bone marrow cell depletion was observed in mice. These results support the idea that M. xanthus myxospores possess diverse immunomodulation properties apparently due to factors different from the classical LPS of Gram-negative bacteria. 相似文献
18.
The bacteriolytic activities in the culture fluid of Myxococcus xanthus were purified and separated into six active fractions by the use of Bio-Gel CM-2 and Bio-Gel P-60. These fractions were identified as: (i) an amidase, (ii) a glucosaminidase, (iii) a glucosaminidase and an amidase, (iv) a protease with probable amidase activity, (v) another protease with probable amidase activity, and (vi) a peptidase active on both d-alanyl-diaminopimelate and d-alanyl-lysine peptide bonds. On one occasion, another amidase was eluted from Bio-Gel CM. Preliminary studies on some characteristics of the enzymes and their production during growth are reported. 相似文献
19.
Eric Eisenstadt 《Journal of bacteriology》1972,112(1):264-267
Vegetative and sporulating cells of Bacillus subtilis retain a higher level of internal potassium than do nonsporulating stationary-phase cells. The addition of manganese to nonsporulating stationary-phase cells, at concentrations required for sporulation, rapidly stimulates uptake and net accumulation of potassium and induces sporulation. 相似文献
20.
Homoserine dehydrogenase in dialyzed cell extracts of Bacillus subtilis 168 was studied, particularly with regard to inhibition, repression, and level of activity as a function of stage of development (growth and sporulation). It was assayed in the "forward direction" using L-aspartic semialdehyde and NADPH as substrates. Of the potentials inhibitors tested, only cysteine and NADP were found to be effective. Both L- and D-cysteine were equally effective. Therefore, the physiological significance of cysteine as an inhibitor is somewhat questionable. Amino acids involved in repression of homoserine dehydrogenase included methionine, isoleucine, possibly threonine, and one or more unidentified components of Casamino acids. The specific activity of homoserine dehydrogenase was highest during the exponential phase of growth and declined steadily during the stationary phase of growth. The low specific activity during late sporulation may favor preferential funnelling of L-aspartic semialdehyde into the lysine pathway, where it is needed for synthesis of large amounts of dipicolinic acid and diaminopimelic acid. 相似文献