共查询到20条相似文献,搜索用时 15 毫秒
1.
EDMUND J. BARTKOWSKI FRANK R. H. KATTERMAN DWAYNE R. BUXTON 《Physiologia plantarum》1978,44(3):153-156
Effects of exogenous free fatty acid application on percentage germination and radicle length were investigated with more chill sensitive (Pima S-4) and less chill sensitive (Pima S-5) cottonseed (Gossypium barbadense L.) at chilling (14°C) and optimal (34°C) temperatures. Of the organic solvents able to solubilize free fatty acids, aqueous solutions as high as 5% dimethyl sulfoxide did not adversely affect germination at 34°C. Palmitic, oleic and linoleic acids (120 μM) were solubilized in 5% DMSO. At 14°C, percent germination of fatty acid treated Pima S-5 significantly increased, while no difference was observed for Pima S-4. Conversely, radicle length of fatty acid treated Pima S-4 significantly increased especially with oleate and linoleate, while no difference was detected for Pima S-5. Fatty acid supplementation influenced neither germination nor radicle length for Pima S-4 and Pima S-5 at 34°C. 相似文献
2.
3.
Thomas Kohler Christopher Weidenmaier Andreas Peschel 《Journal of bacteriology》2009,191(13):4482-4484
Skin-colonizing gram-positive bacteria produce wall teichoic acids (WTAs) or related glycopolymers for unclear reasons. Using a WTA-deficient Staphylococcus aureus mutant, we demonstrated that WTA confers resistance to antimicrobial fatty acids from human sebaceous glands by preventing fatty acid binding. Thus, WTA is probably important for bacterial skin colonization.Bacterial life on mammalian skin depends on efficient adaptation strategies to cope with high salt concentrations and dryness. In addition, skin is protected by a variety of antibacterial molecules, such as antimicrobial peptides (16), bacteriolytic enzymes (14), and antibacterial fatty acids (AFAs) (6, 11, 23). The main source of free fatty acids is the sebum, produced by sebaceous glands, and differentiating keratinocytes of the stratum corneum, the outermost layer of the epidermis, which is composed of dead, keratin-filled cells. Sebaceous glands are found in nearly all mammals, and the composition of the sebum is remarkably species specific (12). Up to 47% of human sebum consists of free fatty acids with palmitoleic acid isomer (C16:1Δ6) as the predominant monoene AFA. Lauric acid (C12:0) is the most potent saturated AFA (23). Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1Δ9), and linoleic acid (C18:2Δ9Δ12) are the main fatty acids in the stratum corneum (9, 23).While most skin-colonizing bacteria are harmless commensals, Staphylococcus aureus frequently causes endogenous infections, ranging from cutaneous infections to life-threatening sepsis and endocarditis (10). S. aureus has developed efficient strategies to survive in its natural niches, the human anterior nares and skin, and to evade the immune system (4, 8). However, only a few studies have previously addressed the molecular basis of staphylococcal resistance to AFA. The major surface protein expressed by S. aureus under iron-limited conditions, IsdA, has recently been shown to confer AFA resistance because it increases the bacterial surface hydrophilicity (2). In addition to proteins, cell wall glycopolymers such as the teichoic acids are thought to govern bacterial surface hydrophobicity. Such polymers are found in most gram-positive bacteria, forming a highly charged mesh within the cell wall (21). They often consist of alternating glycerolphosphate or ribitolphosphate units, which are partially substituted by d-alanine and various glycosyl residues (13, 21). Teichoic acids are anchored in the cytoplasmic membrane via a glycolipid (lipoteichoic acid) or in the peptidoglycan via a phosphodiester linkage (wall teichoic acid [WTA]). A variety of roles in bacterial cell envelope processes and integrity have been assigned to WTA but the major functions of WTA have still remained elusive (21). Our group has recently generated a WTA-deficient S. aureus mutant and demonstrated that WTA is crucial for S. aureus nasal colonization and endovascular infection (19, 20, 22). The tagO gene disrupted in this mutant encodes an N-acetylglucosamine-phosphate transferase catalyzing the first step of WTA biosynthesis (24). The tagO mutant shows a total loss of WTA but seems to be unaffected in growth behavior and susceptibility to different antimicrobial peptides (19). However, the mutant exhibits increased resistance to human beta-defensin 3 (7).In order to study the contribution of WTA to the surface hydrophobicity of S. aureus SA113, a frequently used laboratory strain (5, 19, 22), the affinities of the wild type and the tagO mutant for the hydrophobic solvent dodecan were compared by the microbial adhesion to hydrocarbon test (15). In fact, the hydrophilicity of the WTA-deficient mutant was considerably decreased compared to those of the parental and complemented mutant strains (Fig. (Fig.1),1), confirming the crucial impact of WTA on the physicochemical surface properties of S. aureus. Subsequently, the MICs of a variety of saturated and unsaturated fatty acids occurring in human sebum and stratum corneum were determined (Table (Table1).1). Twenty-four-well plates with 50%-concentrated Müller-Hinton broth (Sigma) containing increasing concentrations of AFAs were inoculated with the bacterial strains, and the optical density was measured after 48 h of growth at 37°C. The tagO mutant showed a profound increase in susceptibility to all tested AFAs compared to the parental strain and the complemented mutant. The strongest MIC reductions were found for palmitoleic acid (sixfold) and linoleic acid (26-fold). In order to compare potential differences in susceptibility to the bactericidal activities of AFAs, bacteria grown overnight in 50%-concentrated Müller-Hinton broth were resuspended in phosphate-buffered saline (PBS) at an optical density of 0.5 at 578 nm, and 1 ml of each suspension was shaken with increasing concentrations of AFAs at 37°C. Incubation was stopped at different time points by dilution with PBS, and numbers of surviving bacteria were determined by counting CFU. Palmitoleic acid exhibited dose-dependent bactericidal activity to SA113, with the tagO mutant having 26-fold reduced survival compared to that of the wild type at 1.25 mM after 10 min of incubation (Fig. (Fig.2A).2A). When different incubation times were used for a given concentration, the tagO mutant was much more rapidly killed than the parental strain, thereby confirming the crucial role of WTA in AFA resistance (Fig. (Fig.2B2B).Open in a separate windowFIG. 1.The WTA-deficient ΔtagO mutant has decreased surface hydrophilicity compared to the wild type and the complemented (compl.) mutant strain, as assessed by the microbial adhesion to hydrocarbon test. The percentages of bacteria associated with the hydrophilic phase are shown. Data represent means ± standard errors of the means from three independent experiments. ***, P < 0.001; ns, not significant (in comparison to the wild-type value).Open in a separate windowFIG. 2.The WTA-deficient tagO mutant is more susceptible to the bactericidal activity of AFAs than the wild-type strain. (A) Bacteria were exposed to the indicated concentrations of palmitoleic acid for 10 min. **, P < 0.005; ***, P < 0.001. (B) The wild type (▪) and the tagO mutant (▴) were exposed to lauric acid (5 mM), cis-6-hexadecenoic acid (5 mM), and palmitoleic acid (1.25 mM) for the indicated times. Data represent means ± standard errors of the means from at least three independent experiments.
Open in a separate windowaPurchased from Sigma.bPurchased from Matreya LTT.cData represent means ± standard errors of the means from at least three independent experiments.We assumed that the decreased surface hydrophilicity of the tagO mutant leads to loss of AFA resistance because the hydrophobic fatty acids can better penetrate the cell wall and bind more efficiently to the cytoplasmic membrane where the antimicrobial activity is exerted. In order to test this hypothesis, we resuspended bacteria grown overnight in PBS at optical densities of 0.05 at 578 nm as described above. For each of the suspensions, 100 μl was incubated with 0.5 μl (1 μg/μl) of fluorescently labeled palmitic acid (Invitrogen) for 5 min at 4°C, and bacterial fluorescence was measured in a flow cytometer at 530 nm (25,000 bacteria per experiment) (FACSCalibur; Becton Dickinson). The fluorescence data shown in Fig. Fig.33 indicate the mean fluorescence levels from three independent experiments. In fact, the tagO-deficient mutant showed a strong increase in palmitic acid binding compared to the wild-type strain and the complemented mutant strain (Fig. (Fig.33).Open in a separate windowFIG. 3.The WTA-deficient tagO mutant binds larger amounts of fluorescently labeled palmitoleic acid than the wild type and the complemented (comp) mutant strain. Results represent the mean fluorescence per bacterial cell. Binding of boron-dipyrromethene-labeled palmitic acid was monitored by fluorescence-activated cell sorter analysis at 530 nm. Data represent means ± standard errors of the means from three independent experiments. **, P < 0.005; ns, not significant (in comparison with the wild-type value).Taken together, our study demonstrates that WTA protects S. aureus against skin AFAs. Notably, the susceptibility of the tagO mutant seems to increase with AFA length, suggesting that the level of WTA-mediated AFA resistance increases with AFA hydrophobicity. In concert with IsdA (2) and further AFA resistance mechanisms, such as the fatty acid-modifying enzyme activity described for certain staphylococcal strains (1), WTA may enable S. aureus to survive on skin. Of note, most skin-colonizing bacteria, including corynebacteria, propionibacteria, micrococci, streptococci, and staphylococci, are gram positive and produce teichoic acids or related cell wall glycopolymers (17, 21). Thus, WTA may be a general strategy of gram-positive bacteria to evade killing by AFAs or other highly lipophilic antimicrobial molecules. The skin represents a complex ecosystem with a highly dynamic biodiversity, which can be altered by subtle changes in host defense molecule amounts (3). Accordingly, reduced levels of cis-6-hexadecenoic acid in atopic dermatitis patients have been associated with increased S. aureus skin colonization and, as a consequence, eczema exacerbation (18). Conversely, topical application of cis-6-hexadecenoic acid on skin leads to a decrease in S. aureus colonization (2). Hence, AFAs may become helpful drugs for treatment of skin infections. Moreover, inhibitors targeting highly conserved steps of WTA biosynthesis, such as the TagO enzyme, may render a large variety of bacteria susceptible to AFAs and other innate host defenses. 相似文献
TABLE 1.
WTA-deficient Sa113 tagO mutant is more susceptible to growth-inhibiting activity of AFAs than wild-type and complemented mutant strainsAntimicrobial fatty acid | MIC (mM) againstc:
| ||
---|---|---|---|
Wild type | tagO mutant | Complemented tagO mutant | |
Lauric acid (dodecanoic acid)a | 1.71 ± 0.032 | 0.88 ± 0.062 | 1.15 ± 0.17 |
cis-6-Hexadecenoic acidb | 0.56 ± 0.061 | 0.16 ± 0.017 | 0.57 ± 0.078 |
Palmitoleic acid (hexadecenoic acid)a | 0.44 ± 0.003 | 0.076 ± 0.003 | 0.32 ± 0.027 |
Linoleic acid (octadecadienoic acid)a | 1.08 ± 0.064 | 0.042 ± 0.0076 | 0.94 ± 0.11 |
4.
Sánchez Valenzuela A Benomar N Abriouel H Pérez Pulido R Martínez Cañamero M Gálvez A 《Antonie van Leeuwenhoek》2012,101(4):701-711
Wild flowers in the South of Spain were screened for Enterococcus faecalis and Enterococcus faecium. Enterococci were frequently associated with prickypear and fieldpoppy flowers. Forty-six isolates, from 8 different flower
species, were identified as E. faecalis (28 isolates) or E. faecium (18 isolates) and clustered in well-defined groups by ERIC-PCR fingerprinting. A high incidence of antibiotic resistance
was detected among the E. faecalis isolates, especially to quinupristin/dalfopristin (75%), rifampicin (68%) and ciprofloxacin (57%), and to a lesser extent
to levofloxacin (35.7%), erythromycin (28.5%), tetracycline (3.5%), chloramphenicol (3.5%) and streptomycin (3.5%). Similar
results were observed for E. faecium isolates, except for a higher incidence of resistance to tetracycline (17%) and lower to erythromycin (11%) or quinupristin/dalfopristin
(22%). Vancomycin or teicoplanin resistances were not detected. Most isolates (especially E. faecalis) were proteolytic and carried the gelatinase gene gelE. Genes encoding other potential virulence factors (ace, efaA
fs, ccf and cpd) were frequently detected. Cytolysin genes were mainly detected in a few haemolytic E. faecium isolates, three of which also carried the collagen adhesin acm gene. Hyaluronidase gene (hyl
Efm
) was detected in two isolates. Many isolates produced bacteriocins and carried genes for enterocins A, B, and L50 mainly.
The similarities found between enterococci from wild flowers and those from animal and food sources raise new questions about
the puzzling lifestyle of these commensals and opportunistic pathogens. 相似文献
5.
We examined effects of exogenous very-long-chain fatty acids on lipids of cultured chick neurons and astrocytes. When chick neurons were incubated in chemically defined medium containing 10 microM nervonic acid (C24:1) for 7 days, it was found that a major fatty acid moiety of gangliosides and sphingomyelin was nervonic acid itself, which was not normally detected in the sphingolipid fraction. This alteration in the fatty acid composition apparently occurred in each ganglioside species. Under these experimental conditions, nervonic acid was not found in the glycerophospholipid fraction, and the amounts of triacylglycerol and free nervonic acid increased. Addition of behenic acid (C22:0) or erucic acid (C22:1) also induced changes in the fatty acid composition of gangliosides. When chick astrocytes were incubated in the presence of 10 microM nervonic acid for 7 days, no significant change was observed in the fatty acid composition of gangliosides. These studies indicate that the manipulation of the fatty acid moiety of sphingolipids in cultured neurons is possible. 相似文献
6.
Margarita Shleeva Anna Goncharenko Yuliya Kudykina Danielle Young Michael Young Arseny Kaprelyants 《PloS one》2013,8(12)
One third of the world population carries a latent tuberculosis (TB) infection, which may reactivate leading to active disease. Although TB latency has been known for many years it remains poorly understood. In particular, substances of host origin, which may induce the resuscitation of dormant mycobacteria, have not yet been described. In vitro models of dormant (“non-culturable”) cells of Mycobacterium smegmatis (mc2155) and Mycobacterium tuberculosis H37Rv were used. We found that the resuscitation of dormant M. smegmatis and M. tuberculosis cells in liquid medium was stimulated by adding free unsaturated fatty acids (FA), including arachidonic acid, at concentrations of 1.6–10 µM. FA addition enhanced cAMP levels in reactivating M. smegmatis cells and exogenously added cAMP (3–10 mM) or dibutyryl-cAMP (0.5–1 mM) substituted for FA, causing resuscitation of M. smegmatis and M. tuberculosis dormant cells. A M. smegmatis null-mutant lacking MSMEG_4279, which encodes a FA-activated adenylyl cyclase (AC), could not be resuscitated by FA but it was resuscitated by cAMP. M. smegmatis and M. tuberculosis cells hyper-expressing AC were unable to form non-culturable cells and a specific inhibitor of AC (8-bromo-cAMP) prevented FA-dependent resuscitation. RT-PCR analysis revealed that rpfA (coding for resuscitation promoting factor A) is up-regulated in M. smegmatis in the beginning of exponential growth following the cAMP increase in lag phase caused by FA-induced cell activation. A specific Rpf inhibitor (4-benzoyl-2-nitrophenylthiocyanate) suppressed FA-induced resuscitation. We propose a novel pathway for the resuscitation of dormant mycobacteria involving the activation of adenylyl cyclase MSMEG_4279 by FAs resulted in activation of cellular metabolism followed later by increase of RpfA activity which stimulates cell multiplication in exponential phase. The study reveals a probable role for lipids of host origin in the resuscitation of dormant mycobacteria, which may function during the reactivation of latent TB. 相似文献
7.
The Manipulation of the Fatty Acid Composition of Glycerolipids in Cyanobacteria Using Exogenous Fatty Acids 总被引:1,自引:0,他引:1
Williams John P.; Maissan Ellen; Mitchell Kirk; Khan Mobashsher U. 《Plant & cell physiology》1990,31(4):495-503
The fatty acid composition of the major diacylglycerolipidsof Anacystis nidulans R2 cells was modified by the careful additionof exogenous fatty acids to the growth medium of the cyanobacteria.In this way it is possible to incorporate significant levelsof different fatty acids into the membranes of the cells andchange their physical properties without changing other environmentalconditions. The exogenous fatty acid reduces or inhibits thebiosynthesis of native fatty acids and substitutes for themin all the major diacylglycerolipids. Although modifying thefatty acid composition in this way is lethal above certain concentrations,the data demonstrate a remarkable ability of the cells to growand develop over a wide range of fatty acid compositions. Similardata show that the fatty acid composition of Synechocystis sp.6803 cells also undergo significant changes in fatty acid compositionon the addition of exogenous fatty acid to the growth mediumand can tolerate similar changes in the degree of unsaturationof the fatty acids of the diacylglycerolipids of the cell membranes. (Received September 4, 1989; Accepted March 13, 1990) 相似文献
8.
V. P. Kholodova S. V. Vasil’ev M. V. Efimova P. Yu. Voronin Z. F. Rakhmankulova E. Yu. Danilova Vl. V. Kuznetsov 《Russian Journal of Plant Physiology》2018,65(6):882-889
Physiological mechanisms of canola (Brassica napus L., cv. Westar) plant protection afforded by melatonin (at 0.1–100 μM) from copper salts (at 10–100 μM) were studied. Plants were cultivated on Hoagland–Snyder medium. At the age of 5 weeks, they were subjected to melatonin, copper sulfate, or their combination for 7 days. It was found that excessive copper in a nutrient medium inhibited the dry biomass accumulation against the control by 25–85%. Copper sulfate diminished the content of chlorophylls and carotenoids and functional activity of the thylakoid membranes in the chloroplasts. It increased 2.0–2.5 times the lipid peroxidation (LPO) intensity and the proline level up to 20 times. Melatonin reduced the changes caused by copper, and the degree of the protection depended on melatonin and CuSO4 concentrations. It was found that melatonin decreased the oxidative stress and proline accumulation, both induced by CuSO4. At first, we established the positive correlation (with the coefficient 0.8240) between the level of oxidative stress and proline content in the presence of CuSO4. Possible mechanisms of protection by melatonin and its biological role under conditions of technogenic stress are discussed. 相似文献
9.
A total of 92 enterococci, isolated from the faeces of minipigs subjected to an in vivo feeding trial, were screened for the production of antimicrobial substances. Bacteriocin production was confirmed for seven strains, of which four were identified as Enterococcus faecalis and three as Enterococcus faecium, on the basis of physiological and biochemical characteristics. The bacteriocins produced by the Ent. faecalis strains showed a narrow spectrum of activity, mainly against other Enterococcus spp., compared with those from the Ent. faecium strains showing a broader spectrum of activity, against indicator strains of Enterococcus spp., Listeria spp., Clostridium spp. and Propionibacterium spp. The bacteriocins of all seven Enterococcus strains were inactivated by alpha-chymotrypsin, proteinase K, trypsin, pronase, pepsin and papain, but not by lipase, lysozyme and catalase. The bacteriocins were heat stable and displayed highest activity at neutral pH. The molecular weight of the bacteriocins, as determined by tricine SDS-PAGE, was approximately 3.4 kDa. Only the strains of Ent. faecalis were found to contain plasmids. PCR detection revealed that the bacteriocins produced by Ent. faecium BFE 1170 and BFE 1228 were similar to enterocin A, whereas those produced by Ent. faecium BFE 1072 displayed homology with enterocin L50A and B. 相似文献
10.
Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli. 总被引:13,自引:4,他引:13
下载免费PDF全文

The possibility of transfer of genetic information by conjugation from gram-positive to gram-negative bacteria was investigated with a pBR322-pAM beta 1 chimeric plasmid, designated pAT191. This shuttle vector, which possesses the tra functions of the streptococcal plasmid pAM beta 1, was conjugatively transferred from Enterococcus faecalis to Escherichia coli with an average frequency of 5 x 10(-9) per donor colony formed after mating. 相似文献
11.
The complete nucleotide sequence of the small (5149 bp) and cryptic plasmid pS86 from Enterococcus faecalis ssp. faecalis S-86 has been determined. Sequence analysis revealed six putative open reading frames (ORFs) encoding polypeptides of 28.3,
11.5, 8.4, 65.1, 7.3, and 11.96 kDa each. Based on sequence similarity, two cassettes have been identified in pS86: ORF1 codes
for the replication initiation protein (Rep); ORF4 codes for a putative mobilization protein that shows similarities to Mob/Pre
proteins from plasmids of Gram-positive bacteria. No function could be assigned to the other putative ORFs found. According
to our results, pS86 plasmid could use a theta-mode of replication, similar to the recently described theta-type replicons
from pUCL287 (Tetragenococcus halophila) and pLA1 or pLA105 (Lactobacillus acidophilus) plasmids.
Received: 24 November 1999 / Accepted: 26 April 2000 相似文献
12.
13.
Dufour M Manson JM Bremer PJ Dufour JP Cook GM Simmonds RS 《Applied and environmental microbiology》2007,73(17):5507-5515
There is increasing concern regarding the presence of vancomycin-resistant enterococci in domestically farmed animals, which may act as reservoirs and vehicles of transmission for drug-resistant enterococci to humans, resulting in serious infections. In order to assess the potential for the use of monolaurin as a food preservative, it is important to understand both its target and potential mechanisms of resistance. A Tn917 mutant library of Enterococcus faecalis AR01/DGVS was screened for resistance (MIC, >100 microg/ml) to monolaurin. Three mutants were identified as resistant to monolaurin and were designated DGRM2, DGRM5, and DGRM12. The gene interrupted in all three mutants was identified as traB, which encodes an E. faecalis pheromone shutdown protein and whose complementation in trans restored monolaurin sensitivity in all three mutants. DGRM2 was selected for further characterization. E. faecalis DGRM2 showed increased resistance to gentamicin and chloramphenicol (inhibitors of protein synthesis), while no difference in the MIC was observed with the cell wall-active antibiotics penicillin and vancomycin. E. faecalis AR01/DGVS and DGRM2 were shown to have similar rates (30% cell lysis after 4 h) of cell autolytic activity when activated by monolaurin. Differences in cell surface hydrophobicity were observed between the wild type and the mutant, with the cell surface of the parent strain being significantly more hydrophobic. Analysis of the cell wall structure of DGRM2 by transmission electron microscopy revealed an increase in the apparent cell wall thickness and contraction of its cytoplasm. Taken together, these results suggest that the increased resistance of DGRM2 was due to a change in cell surface hydrophobicity, consequently limiting the diffusion of monolaurin to a potential target in the cytoplasmic membrane and/or cytoplasm of E. faecalis. 相似文献
14.
Muriel Dufour Janet M. Manson Philip J. Bremer Jean-Pierre Dufour Gregory M. Cook Robin S. Simmonds 《Applied microbiology》2007,73(17):5507-5515
There is increasing concern regarding the presence of vancomycin-resistant enterococci in domestically farmed animals, which may act as reservoirs and vehicles of transmission for drug-resistant enterococci to humans, resulting in serious infections. In order to assess the potential for the use of monolaurin as a food preservative, it is important to understand both its target and potential mechanisms of resistance. A Tn917 mutant library of Enterococcus faecalis AR01/DGVS was screened for resistance (MIC, >100 μg/ml) to monolaurin. Three mutants were identified as resistant to monolaurin and were designated DGRM2, DGRM5, and DGRM12. The gene interrupted in all three mutants was identified as traB, which encodes an E. faecalis pheromone shutdown protein and whose complementation in trans restored monolaurin sensitivity in all three mutants. DGRM2 was selected for further characterization. E. faecalis DGRM2 showed increased resistance to gentamicin and chloramphenicol (inhibitors of protein synthesis), while no difference in the MIC was observed with the cell wall-active antibiotics penicillin and vancomycin. E. faecalis AR01/DGVS and DGRM2 were shown to have similar rates (30% cell lysis after 4 h) of cell autolytic activity when activated by monolaurin. Differences in cell surface hydrophobicity were observed between the wild type and the mutant, with the cell surface of the parent strain being significantly more hydrophobic. Analysis of the cell wall structure of DGRM2 by transmission electron microscopy revealed an increase in the apparent cell wall thickness and contraction of its cytoplasm. Taken together, these results suggest that the increased resistance of DGRM2 was due to a change in cell surface hydrophobicity, consequently limiting the diffusion of monolaurin to a potential target in the cytoplasmic membrane and/or cytoplasm of E. faecalis. 相似文献
15.
Klibi N Ben Slama K Sáenz Y Masmoudi A Zanetti S Sechi LA Boudabous A Torres C 《Canadian journal of microbiology》2007,53(3):372-379
Phenotypic and genotypic determination of virulence factors were carried out in 46 high-level gentamicin-resistant (HLGR) clinical Enterococcus faecalis (n=34) and Enterococcus faecium (n=12) isolates recovered from different patients in La Rabta Hospital in Tunis, Tunisia, between 2000 and 2003 (all these isolates harboured the aac(6')-aph(2") gene). The genes encoding virulence factors (agg, gelE, ace, cylLLS, esp, cpd, and fsrB) were analysed by PCR and sequencing. The production of gelatinase and hemolysin, the adherence to caco-2 and hep-2 cells, and the capacity for biofilm formation were investigated in all 46 HLGR enterococci. The percentages of E. faecalis isolates harbouring virulence genes were as follows: gelE, cpd, and ace (100%); fsrB (62%); agg (56%); cylLLS (41.2%); and esp (26.5%). The only virulence gene detected among the 12 HLGR E. faecium isolates was esp (58%). Gelatinase activity was detected in 22 of the 34 E. faecalis isolates (65%, most of them with the gelE+-fsrB+ genotype); the remaining 12 isolates were gelatinase-negative (with the gelE+-fsrB- genotype and the deletion of a 23.9 kb fragment of the fsr locus). Overall, 64% of the cylLLS-containing E. faecalis isolates showed beta-hemolysis. A high proportion of our HLGR E. faecalis isolates, in contrast to E. faecium, showed moderate or strong biofilm formation or adherence to caco-2 and hep-2 cells. 相似文献
16.
Rapid in Vivo Acylation of Acyl Carrier Protein with Exogenous Fatty Acids in Spirodela oligorrhiza 总被引:3,自引:2,他引:3
Posttranslational acylation of several chloroplast proteins with palmitic acid was recently demonstrated in Spirodela oligorrhiza (AK Mattoo, M Edelman [1987] Proc Natl Acad Sci USA 84: 1497-1501). We have now identified an in vivo acylated, soluble protein having an apparent Mr of 10 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as an acylated form of acyl carrier protein (ACP). This 10-kilodalton protein is present in low abundance, and its acylation is light-stimulated. Turnover of the acyl moiety but not the apo-protein is rapid in the light. The acylated 10-kilodalton protein coelectrophoreses with in vitro synthesized palmitoyl-acyl carrier protein and is immunoprecipitated from soluble extracts with an antibody raised against spinach ACP. Cerulenin, an inhibitor of β-ketoacyl-ACP synthetase, inhibited in vivo acylation of Spirodela ACP. Cell-free extracts of Spirodela plants were able to catalyze the transfer of palmitate from palmitoyl-CoA to ACP, suggesting the existence in higher plants of a pathway for acylation of ACP that involves transacylation from acyl-CoA. 相似文献
17.
Comparative study of vanA gene transfer from Enterococcus faecium to Enterococcus faecalis and to Enterococcus faecium in the intestine of mice 总被引:1,自引:0,他引:1
Bourgeois-Nicolaos N Moubareck C Mangeney N Butel MJ Doucet-Populaire F 《FEMS microbiology letters》2006,254(1):27-33
Vancomycin-resistant enterococci represent a large reservoir in animals because of the use of avoparcin as a growth promoter in Europe. These strains of animal origin enter the food chain and can either colonize the human gut or transfer their resistance genes to the human microbiota. In this study, we compared the transfer of vancomycin resistance from resistant animal Enterococcus faecium to sensitive human Enterococcus faecalis and E. faecium. We analysed these transfers in dibiotic mice and human faecal flora-associated mice. VanA transfer from animal E. faecium to human E. faecalis occurred in dibiotic mice. The transconjugants appeared rapidly and persisted at levels between 3.0 and 4.0 log10 colony-forming units g(-1) of faeces. In human faecal flora-associated mice, vanA gene transfer was not detected towards E. faecalis but was possible between E. faecium strains. Our experiments revealed the possibility of vanA transfer from animal E. faecium to human E. faecalis in vitro and in vivo in the intestine of dibiotic mice. However, intraspecies transfer of vanA gene seems more common than interspecies transfer among enterococci. 相似文献
18.
Jiangwei Yao David F. Bruhn Matthew W. Frank Richard E. Lee Charles O. Rock 《The Journal of biological chemistry》2016,291(1):171-181
Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. 相似文献
19.
20.
High level of aminoglycoside resistance among Enterococcus faecalis and Enterococcus faecium strains
Kozuszko S Białucha A Bogiel T Gospodarek E 《Medycyna do?wiadczalna i mikrobiologia》2011,63(2):105-113
Enterococcus sp. strains are believed as important reason of serious nosocomial infections currently. These infections are cured by using combination of beta-lactams and aminoglycosides for their treatment. Enterococcus sp. resistant to high-level doses of aminoglycosides, beta-lactams and vancomycin are responsible for therapeutic failure. The aim of our study was to evaluate the incidence of isolation and susceptibility to antibiotics of HLAR Enterococcus sp. strains isolated between 2007 and 2010 from the patients of University Hospital No. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Amongst 6137 Enterococcus sp. strains 1124 (18,3%) presented HLAR phenotype; 53,1% of them was identified as E. faecalis and 46,9% as E. faecium. The highest percentage of all examined strains was isolated from the patients of different surgery clinics, Intensive Care Units, and Pediatrics, Hematology and Oncology Clinic. HLAR and HLSR phenotypes were noted in E. faecalis, for 45,7% and 27,5% strains, in E. faecium - 29,8% and 9,5%, respectively. HLGR phenotype was presented twice more often in E. faecium than E. faecalis. Highest percentages of E. faecium resistant to glycopeptides and rifampicin were observed when compared with E. faecalis. The highest percentages of strains intermediate, resistant to vancomycin and resistant to glycopeptides were noted for E. faecium strains with phenotypes HLAR, HLGR and HLSR. 相似文献