首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3(-/-)) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3(-/-) mice than in SD-fed WT mice. In contrast, HFD-fed NOS3(-/-) developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3(-/-) than in those from HFD-fed WT. N(ω)-nitro-L-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3(-/-) mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.  相似文献   

2.
Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice.KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling.KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.  相似文献   

3.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

4.
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.  相似文献   

5.

Aims

Development of metabolic syndrome is associated with impaired cardiac performance, mitochondrial dysfunction and pro-inflammatory cytokine increase, such as the macrophage migration inhibitory factor MIF. Depending on conditions, MIF may exert both beneficial and deleterious effects on the myocardium. Therefore, we tested whether pharmacological inhibition of MIF prevented or worsened metabolic syndrome-induced myocardial dysfunction.

Methods and Results

C57BL/6J mice were fed for ten weeks with 60% fat-enriched diet (HFD) or normal diet (ND). MIF inhibition was obtained by injecting mice twice a week with ISO-1, for three consecutive weeks. Then, triglycerides, cholesterol, fat mass, glucose intolerance, insulin resistance, ex vivo cardiac contractility, animal energetic substrate utilization assessed by indirect calorimetry and mitochondrial respiration and biogenesis were evaluated. HFD led to fat mass increase, dyslipidemia, glucose intolerance and insulin resistance. ISO-1 did not alter these parameters. However, MIF inhibition was responsible for HFD-induced cardiac dysfunction worsening. Mouse capacity to increase oxygen consumption in response to exercise was reduced in HFD compared to ND, and further diminished in ISO-1-treated HFD group. Mitochondrial respiration was reduced in HFD mice, treated or not with ISO-1. Compared to ND, mitochondrial biogenesis signaling was upregulated in the HFD as demonstrated by mitochondrial DNA amount and PGC-1α expression. However, this increase in biogenesis was blocked by ISO-1 treatment.

Conclusion

MIF inhibition achieved by ISO-1 was responsible for a reduction in HFD-induced mitochondrial biogenesis signaling that could explain majored cardiac dysfunction observed in HFD mice treated with MIF inhibitor.  相似文献   

6.
Muscle biology is important topic in diabetes research. We have reported that a diet with ketogenic amino acids rich replacement (KAAR) ameliorated high-fat diet (HFD)-induced hepatosteatosis via activation of the autophagy system. Here, we found that a KAAR ameliorated the mitochondrial morphological alterations and associated mitochondrial dysfunction induced by an HFD through induction of the AKT/4EBP1 and autophagy signaling pathways in both fast and slow muscles. The mice were fed with a standard HFD (30% fat in food) or an HFD with KAAR (HFDKAAR). In both the gastrocnemius and the soleus, HFDKAAR ameliorated HFD-impaired mitochondrial morphology and mitochondrial function, characterized by decreased mitofusin 2, optic atrophy 1, peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α and PPARα levels and increased dynamin-related protein 1 levels. The decreased levels of phosphorylated AKT and 4EBP1 in the gastrocnemius and soleus of HFD-fed mice were remediated by HFDKAAR. Furthermore, the HFDKAAR ameliorated the HFD-induced autophagy defects in the gastrocnemius and soleus. These findings suggest that KAAR may be a novel strategy to combat obesity-induced mitochondrial dysfunction, likely through induction of the AKT/4EBP1 and autophagy pathways in skeletal muscle.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50–60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting that nitro-oxidative stress played a key role in the pathogenesis of these alterations. Treatment with these agents might prevent the development of NAFLD in humans.KEY WORDS: Mitochondrial respiratory chain, Nonalcoholic steatohepatitis, NADPH oxidase, Oxidative phosphorylation, Proteomic, Nitro-oxidative stress  相似文献   

8.
Excess fat intake induces hyperinsulinaemia, increases nutrient uptake and lipid accumulation, amplifies ROS generation, establishes oxidative stress and morphological changes leading to tissue injury in the liver, kidney and heart of high-fat diet (HFD)-fed mice. The effect of azelaic acid (AzA), a C9 α,ω-dicarboxylic acid, against HFD-induced oxidative stress was investigated by assaying the activities and levels of antioxidants and oxidative stress markers in the liver, kidney and heart of C57BL/6J mice. Mice were segregated into two groups, one fed standard diet (NC) and the other fed high-fat diet (HFD) for 15 weeks. HFD-fed mice were subjected to intragastric administration of AzA (80 mg/kg BW)/RSG (10 mg/kg BW) during 11-15 weeks. Glucose, insulin, triglycerides, hepatic and nephritic markers were analysed in the plasma and the activity of enzymatic, non-enzymatic antioxidants and lipid peroxidation markers were examined in the plasma/erythrocytes, liver, kidney and heart of normal and experimental mice. We inferred significant decrease in enzymatic and non-enzymatic antioxidants along with significant increase in glucose, insulin, hepatic and nephritic markers, triglycerides and lipid peroxidation markers in HFD-fed mice. Administration of AzA could positively restore the levels of plasma glucose, insulin, triglycerides, hepatic and nephritic markers to near normal. AzA increased the levels of enzymatic and nonenzymatic antioxidants with significant reduction in the levels of lipid peroxidation markers. Histopathological examination of liver, kidney and heart substantiated these results. Hence, we put forward that AzA could counteract the potential injurious effects of HFD-induced oxidative stress in C57BL/6J mice.  相似文献   

9.
10.
There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA) are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA) or in the cytosol (TgCyto MsrA) were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.  相似文献   

11.
Ketogenic amino acid (KAA) replacement diet has been shown to cure hepatic steatosis, a serious liver disease associated with diverse metabolic defects. In this study, we investigated the effects of KAA replacement diet on nutrition sensing signaling pathway and analyzed whether induction of hepatic autophagy was involved. Mice are fed with high fat diet (HFD) or KAA replacement in high-fat diet (30% fat in food; HFD)-fed (HFDKAAR) and sacrificed at 8, 12, 16 weeks after initiation of experimental food. Hepatic autophagy was analyzed in protein expression of several autophagy-associated molecules and in light chain-3 green fluorescent protein (LC-3 GFP) transgenic mice. HFDKAAR showed increased AMP-activated protein kinase (AMPK) phosphorylation and enhanced liver kinase B1 (LKB1) expression compared to control HFD-fed mice. The KAA-HFD-induced activation of AMPK was associated with an increased protein expression of sirtuin 1 (Sirt1), decreased forkhead box protein O3a (Foxo3a) level, and suppression of mammalian target of rapamycin (mTOR) phosphorylation compared with the HFD-fed mice. The intervention study revealed that a KAA-replacement diet also ameliorated all the established metabolic and autophagy defects in the HFD-fed mice, suggesting that a KAA-replacement diet can be used therapeutically in established diseases. These results indicate that KAA replacement in food could be a novel strategy to combat hepatic steatosis and metabolic abnormalities likely involvement of an induction of autophagy.  相似文献   

12.
An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(−/−) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(−/−) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases.  相似文献   

13.
Premenopausal breast cancer is associated with increased animal fat consumption among normal-weight but not overweight women. Our previous findings in obesity-resistant BALB/c mice showed that a diet high in saturated animal fat (HFD) promotes mammary tumorigenesis in both DMBA carcinogenesis and Trp53-null transplant models. Having made these observations in BALB/c mice, which have very modest HFD weight gain, we determined the effects of HFD in FVB mice, which gain significant weight on HFD. Three-week-old FVB mice fed a low-fat diet or HFD were subjected to 7,12-dimethylbenz[a]anthracene-induced carcinogenesis. Like BALB/c mice, HFD promoted mammary tumorigenesis. Development of tumors largely occurred prior to mice becoming obese, indicating the role of animal-derived HFD rather than resulting obesity in tumor promotion. Also similar to BALB/c mice, early-occurring adenosquamous mammary tumors were abundant among HFD-fed FVB mice. Tumors from HFD mice also had increased intra-tumor M2 macrophages. Prior to tumor development, HFD accelerated normal mammary gland development and increased mammary M2 macrophages, similarly to BALB/c mice. The promotional effects of puberty-initiated HFD on carcinogen-induced mammary cancer are thus largely weight gain-independent. Like BALB/c mice, HFD promoted adenosquamous tumors, suggesting a role for early age HFD in promoting this subtype of triple negative mammary cancer. M2 macrophage recruitment was common to both mouse strains. We speculate that a similar effect of HFD on immune function may contribute to epidemiological findings of increased breast cancer risk in young, premenopausal, normal-weight women who consume a diet high in saturated animal fat.  相似文献   

14.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

15.
Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet (HFD)-induced obese mice. MLE treatment significantly ameliorated LXRα-mediated lipogenesis and hepatic fibrosis markers such as α-smooth muscle actin, while MLE up-regulated lipolysis-associated markers such as lipoprotein lipase in the HFD-fed mice. Moreover, MLE normalized the activities of antioxidant enzymes including heme oxygenase-1 and glutathione peroxidase in accordance with protein levels of 4-hydroxynonenal in the HFD-fed mice. MLE has beneficial effects on obesity-related fatty liver disease by regulation of hepatic lipid metabolism, fibrosis, and antioxidant defense system. MLE supplementation might be a potential therapeutic approach for obesity-related disease including non-alcoholic fatty liver disease.  相似文献   

16.
Obesity is associated with metabolic disorders. Sulforaphane, an isothiocyanate, inhibits adipogenesis and the occurrence of cardiovascular disease. In this study, we investigated whether sulforaphane could prevent high-fat diet (HFD)-induced obesity in C57BL/6N mice. Mice were fed a normal diet (ND), HFD or HFD plus 0.1% sulforaphane (SFN) for 6 weeks. Food efficiency ratios and body weight were lower in HFD-SFN-fed mice than in HFD-fed mice. SFN attenuated HFD-induced visceral adiposity, adipocyte hypertrophy and fat accumulation in the liver. Serum total cholesterol and leptin, and liver triglyceride levels were lower in HFD-SFN-fed mice than in HFD-fed mice. SFN decreased the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and leptin in the adipose tissue of HFD-SFN mice and increased adiponectin expression. Phosphorylation of AMP-activated protein kinase α (AMPKα) and acetyl-CoA carboxylase in the adipose tissue of HFD-SFN-fed mice was elevated, and HMG-CoA reductase expression was decreased compared with HFD-fed mice. Thus, these results suggest that SFN may induce antiobesity activity by inhibiting adipogenesis through down-regulation of PPARγ and C/EBPα and by suppressing lipogenesis through activation of the AMPK pathway.  相似文献   

17.
Obesity has been reported as an independent risk factor for chronic kidney disease, leading to glomerulosclerosis and renal insufficiency. To assess the relationship between a reduced nephron number and a particular susceptibility to obesity-induced renal damage, mice underwent uninephrectomy (UNX) followed by either normal chow or high-fat diet (HFD) and were compared with sham-operated control mice. After 20 weeks of dietary intervention, HFD-fed control mice presented characteristic features of progressive nephropathy, including albuminuria, glomerulosclerosis, renal fibrosis and oxidative stress. These changes were more pronounced in HFD-fed mice that had undergone uninephrectomy. Analysis of gene expression in mouse kidney by whole genome microarrays indicated that high fat diet led to more changes in gene expression than uninephrectomy. HFD affected mainly genes involved in lipid metabolism and transport, whereas the combination of UNX and HFD additionally altered the expression of genes belonging to cytoskeleton remodeling, fibrosis and hypoxia pathways. Canonical pathway analyses identified the farnesoid X receptor (FXR) as a potential key mediator for the observed changes in gene expression associated with UNX-HFD. In conclusion, HFD-induced kidney damage is more pronounced following uninephrectomy and is associated with changes in gene expression that implicate FXR as a central regulatory pathway.  相似文献   

18.
High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD, or if mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar, or elevated, relative to standard diet (SD) mice; thereby, IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.  相似文献   

19.
Spinal cord injury is a debilitating neurological disorder that initiates a cascade of cellular events that result in a period of secondary damage that can last for months after the initial trauma. The ensuing outcome of these prolonged cellular perturbations is the induction of neuronal and glial cell death through excitotoxic mechanisms and subsequent free radical production. We have previously shown that astrocytes can directly induce oligodendrocyte death following trauma, but the mechanisms regulating this process within the oligodendrocyte remain unclear. Here we provide evidence demonstrating that astrocytes directly regulate oligodendrocyte death after trauma by inducing activation of NADPH oxidase within oligodendrocytes. Spinal cord injury resulted in a significant increase in oxidative damage which correlated with elevated expression of the gp91 phox subunit of the NADPH oxidase enzyme. Immunohistochemical analysis confirmed the presence of gp91 phox in oligodendrocytes in vitro and at 1 week following spinal cord injury. Exposure of oligodendrocytes to media from injured astrocytes resulted in an increase in oligodendrocyte NADPH oxidase activity. Inhibition of NADPH oxidase activation was sufficient to attenuate oligodendrocyte death in vitro and at 1 week following spinal cord injury, suggesting that excitotoxicity of oligodendrocytes after trauma is dependent on the intrinsic activation of the NADPH oxidase enzyme. Acute administration of the NADPH oxidase inhibitor apocynin and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate channel blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione significantly improved locomotor behavior and preserved descending axon fibers following spinal cord injury. These studies lead to a better understanding of oligodendrocyte death after trauma and identify potential therapeutic targets in disorders involving demyelination and oligodendrocyte death.  相似文献   

20.
Nutrient malnutrition, during the early stages of development, may facilitate the onset of metabolic diseases later in life. However, the consequences of nutritional insults, such as a high-fat diet (HFD) after protein restriction, are still controversial. We assessed overall glucose homeostasis and molecular markers of mitochondrial function in the gastrocnemius muscle of protein-restricted mice fed an HFD until early adulthood. Male C57BL/6 mice were fed a control (14% protein-control diet) or a protein-restricted (6% protein-restricted diet) diet for 6 weeks. Afterward, mice received an HFD or not for 8 weeks (mice fed a control diet and HFD [CH] and mice fed a protein-restricted diet and HFD [RH]). RH mice showed lower weight gain and fat accumulation and did not show an increase in fasting plasma glucose and insulin levels compared with CH mice. RH mice showed higher energy expenditure, increased citrate synthase, peroxisome-proliferator-activated receptor gamma coactivator 1-alpha protein content, and higher levels of malate and α-ketoglutarate compared with CH mice. Moreover, RH mice showed increased AMPc-dependent kinase and acetyl coenzyme-A (CoA) carboxylase phosphorylation, lower intramuscular triacylglycerol content, and similar malonyl-CoA levels. In conclusion, protein undernourishment after weaning does not potentiate fat accumulation and insulin resistance in adult young mice fed an HFD. This outcome seems to be associated with increased skeletal muscle mitochondrial oxidative capacity and reduced lipids accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号