首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress and mitochondrial dysfunction are known to play important roles in type 2 diabetes mellitus (T2DM) and insulin resistance. However, the pathology of T2DM remains complicated; in particular, the mechanisms of mitochondrial dysfunction in skeletal muscle and other insulin-sensitive tissues are as yet unclear. In the present study, we investigated the underlying mechanisms of oxidative stress and mitochondrial dysfunction by focusing on mitochondrial dynamics, including mitochondrial biogenesis and autophagy, in skeletal muscle of a nonobese diabetic animal model--the Goto-Kakizaki (GK) rat. The results showed that GK rats exhibited impaired glucose metabolism, increased oxidative stress and decreased mitochondrial function. These dysfunctions were found to be associated with induction of LC3B, Beclin1 and DRP1 (key molecules mediating the autophagy pathway), while they appeared not to affect the mitochondrial biogenesis pathway. In addition, (-)-epigallocatechin-3-gallate (EGCG) was tested as a potential autophagy-targeting nutrient, and we found that EGCG treatment improved glucose tolerance and glucose homeostasis in GK rats, and reduced oxidative stress and mitochondrial dysfunction in skeletal muscle. Amelioration of excessive muscle autophagy in GK rats through the down-regulation of the ROS-ERK/JNK-p53 pathway leads to improvement of glucose metabolism, reduction of oxidative stress and inhibition of mitochondrial loss and dysfunction. These results suggest (a) that hyperglycemia-associated oxidative stress may induce autophagy through up-regulation of the ROS-ERK/JNK-p53 pathway, which may contribute to mitochondrial loss in soleus muscle of diabetic GK rats, and (b) that EGCG may be a potential autophagy regulator useful in treatment of insulin resistance.  相似文献   

2.
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer''s disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.  相似文献   

3.
The prevalence of type 2 diabetes mellitus (T2DM) is increasing rapidly with its associated morbidity and mortality. Many pathophysiological pathways such as oxidative stress, inflammatory responses, adipokines, obesity-induced insulin resistance, improper insulin signaling, and beta cell apoptosis are associated with the development of T2DM. There is increasing evidence of the role of mitochondrial dysfunction in the onset of T2DM, particularly in relation to the development of diabetic complications. Here, the role of mitochondrial dysfunction in T2DM is reviewed together with its modulation by antidiabetic therapeutic agents, an effect that may be independent of their hypoglycemic effect.  相似文献   

4.
Luo  Jian-Sheng  Ning  Jia-Qi  Chen  Zhuo-Ya  Li  Wen-Jing  Zhou  Rui-Ling  Yan  Ru-Yu  Chen  Meng-Jie  Ding  Ling-Ling 《Neurochemical research》2022,47(8):2158-2172

Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer’s disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.

  相似文献   

5.
Ischemia-reperfusion injury (IR injury), produced by initial interruption and subsequent restoration of organ blood flow, is an important clinical dilemma accompanied by various cardiac reperfusion strategies following acute myocardial infarction (AMI). Although the restored blood flow is necessary for oxygen and nutrient supply, reperfusion often results in pathological sequelae leading to elevated ischemic damage. Among various theories postulated for IR injury including vascular leakage, oxidative stress, leukocyte entrapment, inflammation and apoptosis, mitochondrial dysfunction plays an essential role in mediating pathophysiological processes with recent evidence depicting a pivotal role for impaired mitophagy in mitochondrial injury. Given the critical role for mitophagy in mitochondrial quality control and the recent reports supporting a tie between mitophagy and IR injury, this review will revisit the contemporary understanding of mitophagy in the regulation of cardiac homeostasis and update recent progresses with regards to mitophagy and cardiac IR injury. We hope to establish a role for mitophagy as a potential therapeutic target in the management of IR injury.  相似文献   

6.
Oxidative stress causes mitochondrial dysfunction and heart failure through unknown mechanisms. Cardiolipin (CL), a mitochondrial membrane phospholipid required for oxidative phosphorylation, plays a pivotal role in cardiac function. The onset of age-related heart diseases is characterized by aberrant CL acyl composition that is highly sensitive to oxidative damage, leading to CL peroxidation and mitochondrial dysfunction. Here we report a key role of ALCAT1, a lysocardiolipin acyltransferase that catalyzes the synthesis of CL with a high peroxidation index, in mitochondrial dysfunction associated with hypertrophic cardiomyopathy. We show that ALCAT1 expression was potently upregulated by the onset of hyperthyroid cardiomyopathy, leading to oxidative stress and mitochondrial dysfunction. Accordingly, overexpression of ALCAT1 in H9c2 cardiac cells caused severe oxidative stress, lipid peroxidation, and mitochondrial DNA (mtDNA) depletion. Conversely, ablation of ALCAT1 prevented the onset of T4-induced cardiomyopathy and cardiac dysfunction. ALCAT1 deficiency also mitigated oxidative stress, insulin resistance, and mitochondrial dysfunction by improving mitochondrial quality control through upregulation of PINK1, a mitochondrial GTPase required for mitochondrial autophagy. Together, these findings implicate a key role of ALCAT1 as the missing link between oxidative stress and mitochondrial dysfunction in the etiology of age-related heart diseases.  相似文献   

7.
The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.  相似文献   

8.
《Free radical research》2013,47(8):898-906
Abstract

Type 2 diabetes mellitus (T2DM) is a risk factor for heart disease. However, the mechanisms of T2DM involvement in cardiac complications are still unclear. In the present study, we investigated mitochondria-related mechanisms underlying the pathogenesis of myocardial disorders in diabetic Goto–Kakizaki (GK) rats. We found that remarkable myocardial mitochondrial deficiency and dysfunction as well as oxidative stress occurred in the heart of GK rats. In addition, our results suggested that the loss of mitochondria was in response to elevated autophagy and upstream FoxO factors in diabetic myocardium. More importantly, (–)-epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, successfully improved mitochondrial function and autophagy in the heart of GK rats. Our findings revealed that diabetes-associated myocardial mitochondrial deficiency and dysfunction was associated with enhanced autophagy in myocardium, and EGCG might be a potential agent in preventing and treating myocardial disorders involved in diabetes.  相似文献   

9.
Manna P  Sil PC 《Biochimie》2012,94(3):786-797
Vascular inflammation and cardiac dysfunction are the leading causes of mortality and morbidity among the diabetic patients. Type 1 diabetic mellitus (T1DM) is associated with increased cardiovascular complications at an early stage of the disease. The purpose of the present study was to explore whether arjunolic acid (AA) plays any protective role against cardiovascular complications in T1DM and if so, what molecular pathways it utilizes for the mechanism of its protective action. Streptozotocin (STZ) was used to induce T1DM in experimental rats. Alteration in plasma lipid profile and release of membrane bound enzymes like LDH (lactate dehydrogenase) and CK (creatine kinase) established the association of hyperlipidemia and cell membrane disintegration with hyperglycemia. Hyperglycemia altered the levels of oxidative stress related biomarkers, decreased the intracellular NAD and ATP concentrations. Hyperglycemia-induced enhanced levels of VEGF, ICAM-1, MCP-1 and IL-6 in the plasma of STZ treated animals indicate vascular inflammation in T1DM. Histological studies and FACS analysis revealed that hyperglycemia caused cell death mostly via the apoptotic pathway. Investigating molecular mechanism, we observed NF-κB and MAPKs (p38 and ERK1/2) activations, mitochondrial membrane depolarization, cytochrome C release, caspase 3 activation and PARP cleavage in apoptotic cell death in the diabetic cardiac tissue. Treatment with AA (20 mg/kg body weight) reduced hyperglycemia, membrane disintegration, oxidative stress, vascular inflammation and prevented the activation of oxidative stress induced signaling cascades leading to cell death. Results suggest that AA possesses the potential to be a beneficial therapeutic agent in diabetes and its associated cardiac complications.  相似文献   

10.
T1D (type 1 diabetes) is an autoimmune disease characterized by lymphocytic infiltration, or inflammation in pancreatic islets called ‘insulitis.’ Comparatively speaking, T2D (type 2 diabetes) is traditionally characterized by insulin resistance and islet β cell dysfunction; however, a number of studies have clearly demonstrated that chronic tissue inflammation is a key contributing factor to T2D. The NLR (Nod-like receptor) family of innate immune cell sensors such as the NLRP3 inflammasome are implicated in leading to CASP1 activation and subsequent IL1B (interleukin 1, β) and IL18 secretion in T2D. Recent developments reveal a crucial role for the autophagy pathway under conditions of oxidative stress and inflammation. Increasingly, research on autophagy has begun to focus on its role in interacting with inflammatory processes, and thereby how it potentially affects the outcome of disease progression. In this review, we explore the pathophysiological pathways associated with oxidative stress and inflammation in T2D. We also explore how autophagy influences glucose homeostasis by modulating the inflammatory response. We will provide here a perspective on the current research between autophagy, inflammation and T2D.  相似文献   

11.
Oxidative stress can damage various cellular components of osteoblasts, and is regarded as a pivotal pathogenic factor for bone loss. Increasing evidence indicates a significant role of cell autophagy in response to oxidative stress. However, the role of autophagy in the osteoblasts under oxidative stress remains to be clarified. In this study, we verified that hydrogen peroxide induced autophagy and apoptosis in a dose- and time-dependent manner in osteoblastic Mc3T3-E1 cells. Both 3-methyladenine (the early steps of autophagy inhibitor) and bafilomycin A1 (the last steps of autophagy inhibitor) enhanced the cell apoptosis and reactive oxygen species level in the osteoblasts insulted by hydrogen peroxide. However, promotion of autophagy with either a pharmacologic inducer (rapamycin) or the Beclin-1 overexpressing technique rescued the cell apoptosis and reduced the reactive oxygen species level in the cells. Treatment with H2O2 significantly increased the levels of carbonylated proteins, malondialdehyde and 8-hydroxy-2′-deoxyguanosine, decreased the mitochondrial membrane potential, and increased the mitochondria-mediated apoptosis markers. The damaged mitochondria were cleared by autophagy. Furthermore, the molecular levels of the endoplasmic reticula stress signaling pathway changed in hydrogen peroxide-treated Mc3T3-E1 cells, and blocking this stress signaling pathway by RNA interference against candidates of glucose-regulated protein 78 and protein kinase-like endoplasmic reticulum kinase decreased autophagy while increasing apoptosis in the cells. In conclusion, oxidative damage to osteoblasts could be alleviated by early autophagy through the endoplasmic reticulum stress pathway. Our findings suggested that modulation of osteoblast autophagy could have a potentially therapeutic value for osteoporosis.  相似文献   

12.

Background

Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases.

Scope of review

We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases.

Major conclusion

Induction of adaptive responses via AMPK–PFK2, AMPK–FOXO3a, AMPK–PGC-1α, and AMPK–mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases.

General significance

Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

13.
Inflammation has been linked to multiple degenerative and acute diseases as well as the aging process. Moreover, mitochondrial alterations play a central role in these processes. Mitochondria have an important role in pro-inflammatory signaling; similarly, pro-inflammatory mediators may also alter mitochondrial function. Both of these processes increase mitochondrial oxidative stress, promoting a vicious inflammatory cycle. Additionally, damage-associated molecular patterns derived from mitochondria could contribute to inflammasome formation and caspase-1 activation, while alterations in mitochondrial autophagy may cause inflammation. Strategies aimed at controlling excessive oxidative stress within mitochondria may represent both preventive and therapeutic interventions in inflammation.  相似文献   

14.
Autophagy is a cellular self-digestion process that mediates protein quality control and serves to protect against neurodegenerative disorders, infections, inflammatory diseases and cancer. Current evidence suggests that autophagy can selectively remove damaged organelles such as the mitochondria. Mitochondria-induced oxidative stress has been shown to play a major role in a wide range of pathologies in several organs, including the heart. Few studies have investigated whether enhanced autophagy can offer protection against mitochondrially-generated oxidative stress. We induced mitochondrial stress in cardiomyocytes using antimycin A (AMA), which increased mitochondrial superoxide generation, decreased mitochondrial membrane potential and depressed cellular respiration. In addition, AMA augmented nuclear DNA oxidation and cell death in cardiomyocytes. Interestingly, although oxidative stress has been proposed to induce autophagy, treatment with AMA did not result in stimulation of autophagy or mitophagy in cardiomyocytes. Our results showed that the MTOR inhibitor rapamycin induced autophagy, promoted mitochondrial clearance and protected cardiomyocytes from the cytotoxic effects of AMA, as assessed by apoptotic marker activation and viability assays in both mouse atrial HL-1 cardiomyocytes and human ventricular AC16 cells. Importantly, rapamycin improved mitochondrial function, as determined by cellular respiration, mitochondrial membrane potential and morphology analysis. Furthermore, autophagy induction by rapamycin suppressed the accumulation of ubiquitinylated proteins induced by AMA. Inhibition of rapamycin-induced autophagy by pharmacological or genetic interventions attenuated the cytoprotective effects of rapamycin against AMA. We propose that rapamycin offers cytoprotection against oxidative stress by a combined approach of removing dysfunctional mitochondria as well as by degrading damaged, ubiquitinated proteins. We conclude that autophagy induction by rapamycin could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.  相似文献   

15.
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic‐lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.  相似文献   

16.
《Free radical research》2013,47(4):243-256
Abstract

Diabetes mellitus and breast cancer are two important health problems. Type 2 diabetes (T2DM) and obesity are closely linked with both being associated with breast cancer. Despite abundant epidemiological data, there is no definitive evidence regarding the mechanisms responsible for this association. The proposed mechanisms by which diabetes affects breast cancer risk and prognosis are the same as the mechanisms hypothesised for the contribution of obesity to breast cancer risk. The obesity-induced inflammation promoted by adipose tissue dysfunction is a key feature, which is thought to be an important link between obesity and cancer. Inflammation induces an increase in free radicals and subsequently promotes oxidative stress, which may create a microenvironment favourable to the tumor development in obese persons. Oxidative stress is also proposed as the link between obesity and diabetes mellitus. Therefore, obesity-related oxidative stress could be a direct cause of neoplastic transformation associated with obesity and T2DM in breast cancer cells. This review is focused on the role of obesity-related oxidative stress in the context of chronic inflammation, on the time of breast cancer onset and progression, which provide targets for preventive and therapeutic strategies in the fields of diabetes and obesity-related breast cancer.  相似文献   

17.
Mitochondria have a crucial role in the supply of energy to the brain. Mitochondrial alterations can lead to detrimental consequences on the function of brain cells and are thought to have a pivotal role in the pathogenesis of several neurologic disorders. This study was aimed to evaluate mitochondrial function, fusion–fission and biogenesis and autophagy in brain cortex of 6-month-old Goto–Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes (T2D). No statistically significant alterations were observed in mitochondrial respiratory chain and oxidative phosphorylation system. A significant decrease in the protein levels of OPA1, a protein that facilitates mitochondrial fusion, was observed in brain cortex of GK rats. Furthermore, a significant decrease in the protein levels of LC3-II and a significant increase in protein levels of mTOR phosphorylated at serine residue 2448 were observed in GK rats suggesting a suppression of autophagy in diabetic brain cortex. No significant alterations were observed in the parameters related to mitochondrial biogenesis. Altogether, these results demonstrate that during the early stages of T2D, brain mitochondrial function is maintained in part due to a delicate balance between mitochondrial fusion–fission and biogenesis and autophagy. However, future studies are warranted to evaluate the role of mitochondrial quality control pathways in late stages of T2D.  相似文献   

18.
Autophagy is a catabolic process involving lysosomal turnover of proteins and organelles for maintenance of cellular homeostasis and mitigation of metabolic stress. Autophagy defects are linked to diseases, such as liver failure, neurodegeneration, inflammatory bowel disease, aging and cancer. The role of autophagy in tumorigenesis is complex and likely context-dependent. Human breast, ovarian and prostate cancers have allelic deletions of the essential autophagy regulator BECN1 and Becn1(+/-) and other autophagy-deficient transgenic mice are tumor-prone, whereas tumors with constitutive Ras activation, including human pancreatic cancers, upregulate basal autophagy and are commonly addicted to this pathway for survival and growth; furthermore, autophagy suppression by Fip200 deletion compromises PyMT-induced mammary tumorigenesis. The double-edged sword function of autophagy in cancer has been attributed to both cell- and non-cell-autonomous mechanisms, as autophagy defects promote cancer progression in association with oxidative and ER stress, DNA damage accumulation, genomic instability and persistence of inflammation, while functional autophagy enables cancer cell survival under stress and likely contributes to treatment resistance. In this review, we will focus on the intimate link between autophagy and cancer cell metabolism, a topic of growing interest in recent years, which has been recognized as highly clinically relevant and has become the focus of intense investigation in translational cancer research. Many tumor-associated conditions, including intermittent oxygen and nutrient deprivation, oxidative stress, fast growth and cell death suppression, modulate, in parallel and in interconnected ways, both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain uncontrolled proliferation and evade the toxic effects of radiation and/or chemotherapy. Elucidating the interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets and develop synthetically lethal treatment strategies that preferentially target cancer cells, while sparing normal tissues.  相似文献   

19.
去乙酰化酶SIRT1在许多生物过程中具有重要的作用,包括氧化应激、能量代谢、细胞分化及基因组稳定等。细胞的存活及其寿命和氧化应激的存在密切相关。氧化应激可引起多种病理表现,如内皮损伤、线粒体损伤、炎症、自噬、凋亡甚至坏死等。近来研究发现,SIRT1在多种氧化应激相关疾病中保护细胞存活。SIRT1可以通过调控不同转录因子而发挥抗氧化应激作用,但研究发现,SIRT1也对氧化应激有负性调控作用。本文就SIRT1对氧化应激的调控进行概述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号