首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternary ammonium compounds (QACs) represent widely used cationic biocides that persist in natural environments. Although microbial degradation, sensitivity and resistance to QACs have been extensively documented, a quantitative understanding of how whole communities adapt to QAC exposure remain elusive. To gain insights into these issues, we exposed a microbial community from a contaminated river sediment to varied levels of benzalkonium chlorides (BACs, a family of QACs) for 3 years. Comparative metagenomic analysis showed that the BAC‐fed communities were dramatically decreased in phylogenetic diversity compared with the control (no BAC exposure), resulting presumably from BAC toxicity, and dominated by Pseudomonas species (> 50% of the total). Time‐course metagenomics revealed that community adaptation occurred primarily via selective enrichment of BAC‐degrading Pseudomonas populations, particularly P. nitroreducens, and secondarily via amino acid substitutions and horizontal transfer of a few selected genes in the Pseudomonas populations, including a gene encoding a PAS/PAC sensor protein and ring‐hydroxylating dioxygenase genes. P. nitroreducens isolates were reproducibly recoverable from communities after prolonged periods of no‐BAC exposure, suggesting that they are robust BAC‐degraders. Our study provides new insights into the mechanisms and tempo of microbial community adaptation to QAC exposure and has implications for treating QACs in biological engineered systems.  相似文献   

2.
The present study deals with the decolorisation, biodegradation and detoxification of Direct Black-38, a benzidine based azo dye, by a mixed microbial culture isolated from an aerobic bioreactor treating textile wastewater. The studies revealed a biotransformation of Direct Black-38 into benzidine and 4-aminobiphenyl followed by complete decolorisation and biodegradation of these toxic intermediates. From cytotoxicity studies, it was concluded that detoxification of the dye took place after degradation of the toxic intermediates by the culture.  相似文献   

3.
从某化工厂排水沟底泥中取样,经2个月的富集驯化得到六氯苯好氧降解菌群。通过测定该微生物菌群在降解六氯苯过程中累积耗氧量、微生物生长曲线及Cl-浓度的变化,证明在好氧条件下该微生物菌群能够以六氯苯为唯一碳源和能源生长。当培养温度为30℃,pH为7.0时,该菌群能在18d内将无机盐培养基中浓度为4.5mg/L的六氯苯降解55%以上,降解速率达到137.5μg/(L.d)。对降解菌群提取总DNA,选择性扩增细菌16S rDNA片段,建立克隆文库。通过限制性内切酶(限制性内切酶HaeⅢ和RsaⅠ)分析,得到9种不同的谱型,其中3种谱型是主要谱型。对主要谱型的克隆子测序,结果表明,它们分别与Alcaligenes和Azospirillum菌属相似性最高。该菌群在去除环境中难降解的有机氯污染物方面具有应用前景。  相似文献   

4.
Polyvinyl alcohol was biodegraded under denitrifying conditions with a microbial community originated from a municipal wastewater treatment plant. The derived microbial consortium was capable of polyvinyl alcohol degradation under both denitrifying and aerobic conditions. The community dynamics was monitored by temperature gradient gel electrophoresis, and a principal utilizing organism was identified and assigned as Steroidobacter sp. PD. The possible role of Steroidobacter sp. PD was also investigated by sequencing the 16S rDNA clone library prepared from the degrading community. qPCR analysis showed that the fraction of the microorganism in the community was very low initially (0.02%) and had reached to about 16% by the end of the biodegradation experiment. The study revealed that polyvinyl alcohol can be biodegraded in a water environment not only under aerobic but also under denitrifying conditions.  相似文献   

5.
生物处理石油污染的研究概况   总被引:7,自引:0,他引:7  
自20世纪80年代以来,人们对微生物降解石油进行了深入的研究,并逐步将这一技术应用于实际环境的处理中。处理环境中菌群的数量及组成、生物降解的有效性、实际环境中出现的影响因子对降解的影响、石油的毒性和极限环境下的生物降解石油等,许多学者都进行了广泛的研究。此外,一些研究者也尝试着通过构建生物降解模型,可以使微生物降解石油的研究能从经验上升到理论。  相似文献   

6.
六氯-1,3-丁二烯(hexachlorobutadiene,HCBD)是一种有毒有害的脂肪族氯代烃,曾经作为杀虫剂、除草剂、变压器油和传热流体等化学工业产品的重要成分被广泛应用于生产生活。HCBD因满足《关于持久性有机污染物的斯德哥尔摩公约》中风险筛选标准(如毒性、持久性、远距离环境迁移和生物累积性等),缔约方于2015年第七次会议中将其增列为持久性有机污染物,2017年又将其列入该公约的附件C以控制其环境排放量。目前关于HCBD的环境归趋仍是研究热点,但是对于HCBD的微生物降解转化机制尚缺乏深入研究。鉴于此,本文重点回顾并讨论了地下水、底泥等厌氧环境中已报道的HCBD微生物降解转化途径、速率及机制,并从热力学角度阐述HCBD及其降解产物作为电子受体通过还原性脱氯反应被厌氧脱卤微生物代谢转化的可行性。最后,本文根据现有研究结果,提出微生物厌氧降解HCBD的研究展望,包括多组学技术解析HCBD降解功能菌群结构和潜在互作机制、HCBD厌氧降解微生物的分离与纯化,以及HCBD厌氧降解菌剂的开发与污染场地原位生物修复应用等。  相似文献   

7.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), commonly known as dioxins (PCDD/Fs), are toxic environmental pollutants formed from various sources. Elimination of these pollutants from the environment is a difficult task due to their persistent and ubiquitous nature. Removal of dioxins by biological degradation (biodegradation) is considered a feasible method as an alternative to other expensive physicochemical approaches. Biodegradation of dioxins has been extensively studied in several microorganisms, and details concerning biodiversity, biodegradation, biochemistry and molecular biology of this process have accumulated during the last three decades. There are several microbial mechanisms responsible for biodegradation of dioxins, including oxidative degradation by dioxygenase-containing aerobic bacteria, bacterial and fungal cytochrome P-450, fungal lignolytic enzymes, reductive dechlorination by anaerobic bacteria, and direct ether ring cleavage by fungi containing etherase-like enzymes. Many attempts have been made to bioremediate PCDD/Fs using this basic knowledge of microbial dioxin degradation. This review emphasizes the present knowledge and recent advancements in the microbial biotransformation, biodegradation and bioremediation of dioxins.  相似文献   

8.
A facultative Staphylococcus arlettae bacterium, isolated from an activated sludge process in a textile industry, was able to successfully decolourize four different azo dyes under microaerophilic conditions (decolourization percentage >97%). Further aeration of the decolourized effluent was performed to promote oxidation of the degradation products. The degradation products were characterized by FT-IR and UV–vis techniques and their toxicity with respect to Daphnia magna was measured. The amine concentrations as well as the total organic carbon (TOC) levels were monitored during the biodegradation process. The presence of aromatic amine in the microaerophilic stage and its absence in the aerobic stage indicated the presence of azoreductase activity and an oxidative biodegradation process, respectively. TOC reduction was ~15% in the microaerophilic stage and ~70% in the aerobic stage. The results provided evidence that, using a single Staphylococcus arlettae strain in the same bioreactor, the sequential microaerophilic/aerobic stages were able to form aromatic amines by reductive break-down of the azo bond and to oxidize them into non-toxic metabolites.  相似文献   

9.
Microbial decolorization and degradation of synthetic dyes: a review   总被引:3,自引:0,他引:3  
The synthesis of dyes and pigments used in textiles and other industries generate the hazardous wastes. A dye is used to impart color to materials of which it becomes an integral part. The waste generated during the process and operation of the dyes commonly found to contain the inorganic and organic contaminant leading to the hazard to ecosystem and biodiversity causing impact on the environment. The amount of azo dyes concentration present in wastewater varied from lower to higher concentration that lead to color dye effluent causing toxicity to biological ecosystem. The physico-chemical treatment does not remove the color and dye compound concentration. The decolorization of the dye takes place either by adsorption on the microbial biomass or biodegradation by the cells. Bioremediation takes place by anaerobic and/or aerobic process. The anaerobic process converts dye in toxic amino compounds which on further treatment with aerobic reaction convert the intermediate into CO2 biomass and inorganics. In the present review the decolorization and degradation of azo dyes by fungi, algae, yeast and bacteria have been cited along with the anaerobic to aerobic treatment processes. The factors affecting decolorization and biodegradation of azo dye compounds such as pH, temperature, dye concentration, effects of CO2 and Nitrogen, agitation, effect of dye structure, electron donor and enzymes involved in microbial decolorization of azo dyes have been discussed. This paper will have the application for the decolorization and degradation of azo dye compound into environmental friendly compounds.  相似文献   

10.
The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in the United State history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared with outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep sea. Various other microbial functional genes that are relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could have a significant role in biodegradation of oil spills in deep-sea environments.  相似文献   

11.
Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects   总被引:1,自引:0,他引:1  
Aromatic hydrocarbons contaminate many environments worldwide, and their removal often relies on microbial bioremediation. Whereas aerobic biodegradation has been well studied for decades, anaerobic hydrocarbon biodegradation is a nascent field undergoing rapid shifts in concept and scope. This review presents known metabolic pathways used by microbes to degrade aromatic hydrocarbons using various terminal electron acceptors; an outline of the few catabolic genes and enzymes currently characterized; and speculation about current and potential applications for anaerobic degradation of aromatic hydrocarbons.  相似文献   

12.
Microbial degradation of tannins – A current perspective   总被引:26,自引:0,他引:26  
Tannins are water-soluble polyphenolic compounds having wide prevalence in plants. Hydrolysable and condensed tannins are the two major classes of tannins. These compounds have a range of effects on various organisms – from toxic effects on animals to growth inhibition of microorganisms. Some microbes are, however, resistant to tannins, and have developed various mechanisms and pathways for tannin degradation in their natural milieu. The microbial degradation of condensed tannins is, however, less than hydrolysable tannins in both aerobic and anaerobic environments. A number of microbes have also been isolated from the gastrointestinal tract of animals, which have the ability to break tannin-protein complexes and degrade tannins, especially hydrolysable tannins. Tannase, a key enzyme in the degradation of hydrolysable tannins, is present in a diverse group of microorganisms, including rumen bacteria. This enzyme is being increasingly used in a number of processes. Presently, there is a need for increased understanding of the biodegradation of condensed tannins, particularly in ruminants.  相似文献   

13.
Aims:  To investigate the factors affecting benzene biodegradation and microbial community composition in a contaminated aquifer.
Methods and Results:  We identified the microbial community in groundwater samples from a benzene-contaminated aquifer situated below a petrochemical plant. Eleven out of twelve groundwater samples with in situ dissolved oxygen concentrations between 0 and 2·57 mg l−1 showed benzene degradation in aerobic microcosm experiments, whereas no degradation in anaerobic microcosms was observed. The lack of aerobic degradation in the remaining microcosm could be attributed to a pH of 12·1. Three groundwaters, examined by 16S rRNA gene clone libraries, with low in situ oxygen concentrations and high benzene levels, each had a different dominant aerobic (or denitrifying) population, either Pseudomonas , Polaromonas or Acidovorax species. These groundwaters also had syntrophic organisms, and aceticlastic methanogens were detected in two samples. The alkaline groundwater was dominated by organisms closely related to Hydrogenophaga .
Conclusions:  Results show that pH 12·1 is inimical to benzene biodegradation, and that oxygen concentrations below 0·03 mg l−1 can support aerobic benzene-degrading communities.
Significance and Impact of the Study:  These findings will help to guide the treatment of contaminated groundwaters, and raise questions about the extent to which aerobes and anaerobes may interact to effect benzene degradation.  相似文献   

14.
The biodegradation of polychlorinated biphenyls (PCBs) relies on the ability of aerobic microorganisms such as Burkholderia xenovorans sp. LB400 to tolerate two potential modes of toxicity presented by PCB degradation: passive toxicity, as hydrophobic PCBs potentially disrupt membrane and protein function, and degradation-dependent toxicity from intermediates of incomplete degradation. We monitored the physiological characteristics and genome-wide expression patterns of LB400 in response to the presence of Aroclor 1242 (500 ppm) under low expression of the structural biphenyl pathway (succinate and benzoate growth) and under induction by biphenyl. We found no inhibition of growth or change in fatty acid profile due to PCBs under nondegrading conditions. Moreover, we observed no differential gene expression due to PCBs themselves. However, PCBs did have a slight effect on the biosurface area of LB400 cells and caused slight membrane separation. Upon activation of the biphenyl pathway, we found growth inhibition from PCBs beginning after exponential-phase growth suggestive of the accumulation of toxic compounds. Genome-wide expression profiling revealed 47 differentially expressed genes (0.56% of all genes) under these conditions. The biphenyl and catechol pathways were induced as expected, but the quinoprotein methanol metabolic pathway and a putative chloroacetaldehyde dehydrogenase were also highly expressed. As the latter protein is essential to conversion of toxic metabolites in dichloroethane degradation, it may play a similar role in the degradation of chlorinated aliphatic compounds resulting from PCB degradation.  相似文献   

15.
2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.  相似文献   

16.
The wide range of redox conditions and diversity of microbial populations in organic-rich wetland sediments could enhance biodegradation of chlorinated solvents. To evaluate potential biodegradation rates of trichloroethylene (TCE) and its anaerobic daughter products (cis-1,2-dichloroethylene; trans-1,2-dichloroethylene; and vinyl chloride), laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a TCE contaminant plume. Under methanogenic conditions, biodegradation rates of TCE were extremely rapid at 0.30 to 0.37 d-1 (half-life of about 2 days). Although the TCE biodegradation rate was slower under sulfate-reducing conditions (0.032 d-1) than under methanogenic conditions, the rate was still two orders of magnitude higher than those reported in the literature for microcosms constructed with sandy aquifer sediments. In the aerobic microcosm experiments, biodegradation occurred only if methane consumption occurred, indicating that methanotrophs were involved. Comparison of laboratory-measured rates indicates that production of the 1,2-dichloroethylene isomers and vinyl chloride by anaerobic TCE biodegradation could be balanced by their consumption through aerobic degradation where methanotrophs are active in wetland sediment. TCE degradation rates estimated using field data (0.009 to 0.016 d-1) agree with the laboratory-measured rates within a factor of 3 to 22, supporting the feasibility of natural attenuation as a remediation method for contaminated groundwater discharging in this wetland and other similar environments.  相似文献   

17.
The biodegradation of polychlorinated biphenyls (PCBs) relies on the ability of aerobic microorganisms such as Burkholderia xenovorans sp. LB400 to tolerate two potential modes of toxicity presented by PCB degradation: passive toxicity, as hydrophobic PCBs potentially disrupt membrane and protein function, and degradation-dependent toxicity from intermediates of incomplete degradation. We monitored the physiological characteristics and genome-wide expression patterns of LB400 in response to the presence of Aroclor 1242 (500 ppm) under low expression of the structural biphenyl pathway (succinate and benzoate growth) and under induction by biphenyl. We found no inhibition of growth or change in fatty acid profile due to PCBs under nondegrading conditions. Moreover, we observed no differential gene expression due to PCBs themselves. However, PCBs did have a slight effect on the biosurface area of LB400 cells and caused slight membrane separation. Upon activation of the biphenyl pathway, we found growth inhibition from PCBs beginning after exponential-phase growth suggestive of the accumulation of toxic compounds. Genome-wide expression profiling revealed 47 differentially expressed genes (0.56% of all genes) under these conditions. The biphenyl and catechol pathways were induced as expected, but the quinoprotein methanol metabolic pathway and a putative chloroacetaldehyde dehydrogenase were also highly expressed. As the latter protein is essential to conversion of toxic metabolites in dichloroethane degradation, it may play a similar role in the degradation of chlorinated aliphatic compounds resulting from PCB degradation.  相似文献   

18.
This paper summarizes the methodology utilized for measuring the toxic and inhibitory effects of azo-reactive dyes on the activity of activated sludge. The microbial sensor employed in this study consisted of a small-fluidized bed reactor in which the microbial mass was immobilized on spherical (diameter =1-2 mm) reticulated sinter glass carriers. To sustain a highly dense population of aerobic microbes, pure oxygen was supplied via a cylindrical chamber, which comprised part of the sample re-circulation system. The mean hydraulic retention time in the microbial sensor ranged between 30 and 40 min, while temperature was maintained at 30 degrees C and pH at 6.4. Inhibition of microbial activity (toxicity) was determined as the mean percent reduction in carbon dioxide production from microorganisms' respiration. Several azo-reactive dyes demonstrated toxicity when applied at a high concentration (2 g/l), however, a portion of the microbes showed tolerance to the dyes. Moreover, textile wastewater demonstrated very efficient biodegradation.  相似文献   

19.
The biodegradability of seven different crude oils was found to be highly dependent on their composition and on incubation temperature. At 20 C lighter oils had greater abiotic losses and were more susceptible to biodegradation than heavier oils. These light crude oils, however, possessed toxic volatile components which evaporated only slowly and inhibited microbial degradation of these oils at 10 C. No volatile toxic fraction was associated with the heavier oils tested. Rates of oil mineralization for the heavier oils were significantly lower at 20 C than for the lighter ones. Similar relative degradation rates were found with a mixed microbial community, using CO2 evolution as the measure, and with a Pseudomonas isolate from the Arctic, using O2 consumption as the measure. The paraffinic, aromatic, and asphaltic fractions were subject to biodegradation. Some preference was shown for paraffin degradation, especially at low temperatures. Branched paraffins, such as pristane, were degraded at both 10 and 20 C. At best, a 20% residue still remained after 42 days of incubation. Oil residues generally had a lower relative percentage of paraffins and higher percentage of asphaltics than fresh or weathered oil.  相似文献   

20.
Several new methodologies have enabled recent studies on the microbial biodegradation mechanisms of organic pollutants. Culture-independent techniques for analysis of the genetic and metabolic potential of natural and model microbial communities that degrade organic pollutants have identified new metabolic pathways and enzymes for aerobic and anaerobic degradation. Furthermore, structural studies of the enzymes involved have revealed the specificities and activities of key catabolic enzymes, such as dioxygenases. Genome sequencing of several biodegradation-relevant microorganisms have provided the first whole-genome insights into the genetic background of the metabolic capability and biodegradation versatility of these organisms. Systems biology approaches are still in their infancy, but are becoming increasingly helpful to unravel, predict and quantify metabolic abilities within particular organisms or microbial consortia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号