首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The joint venture of many members is common both in animal world and human society. In these public enterprizes, highly cooperative groups are more likely to while low cooperative groups are still possible but not probable to succeed. Existent literature mostly focuses on the traditional public goods game, in which cooperators create public wealth unconditionally and benefit all group members unbiasedly. We here institute a model addressing this public goods dilemma with incorporating the public resource foraging failure risk. Risk-averse individuals tend to lead a autarkic life, while risk-preferential ones tend to participate in the risky public goods game. For participants, group''s success relies on its cooperativeness, with increasing contribution leading to increasing success likelihood. We introduce a function with one tunable parameter to describe the risk removal pattern and study in detail three representative classes. Analytical results show that the widely replicated population dynamics of cyclical dominance of loner, cooperator and defector disappear, while most of the time loners act as savors while eventually they also disappear. Depending on the way that group''s success relies on its cooperativeness, either cooperators pervade the entire population or they coexist with defectors. Even in the later case, cooperators still hold salient superiority in number as some defectors also survive by parasitizing. The harder the joint venture succeeds, the higher level of cooperation once cooperators can win the evolutionary race. Our work may enrich the literature concerning the risky public goods games.  相似文献   

2.
Public goods games are models of social dilemmas where cooperators pay a cost for the production of a public good while defectors free ride on the contributions of cooperators. In the traditional framework of evolutionary game theory, the payoffs of cooperators and defectors result from interactions in groups formed by binomial sampling from an infinite population. Despite empirical evidence showing that group-size distributions in nature are highly heterogeneous, most models of social evolution assume that the group size is constant. In this article, I remove this assumption and explore the effects of having random group sizes on the evolutionary dynamics of public goods games. By a straightforward application of Jensen's inequality, I show that the outcome of general nonlinear public goods games depends not only on the average group size but also on the variance of the group-size distribution. This general result is illustrated with two nonlinear public goods games (the public goods game with discounting or synergy and the N-person volunteer's dilemma) and three different group-size distributions (Poisson, geometric, and Waring). The results suggest that failing to acknowledge the natural variation of group sizes can lead to an underestimation of the actual level of cooperation exhibited in evolving populations.  相似文献   

3.
The emergence and maintenance of cooperation by natural selection is an enduring conundrum in evolutionary biology, which has been studied using a variety of game theoretical models inspired by different biological situations. The most widely studied games are the Prisoner's Dilemma, the Snowdrift game and by-product mutualism for pairwise interactions, as well as Public Goods games in larger groups of interacting individuals. Here, we present a general framework for cooperation in social dilemmas in which all the traditional scenarios can be recovered as special cases. In social dilemmas, cooperators provide a benefit to the group at some cost, while defectors exploit the group by reaping the benefits without bearing the costs of cooperation. Using the concepts of discounting and synergy for describing how benefits accumulate when more than one cooperator is present in a group of interacting individuals, we recover the four basic scenarios of evolutionary dynamics given by (i) dominating defection, (ii) coexistence of defectors and cooperators, (iii) dominating cooperation and (iv) bi-stability, in which cooperators and defectors cannot invade each other. Generically, for groups of three or more interacting individuals further, more complex, dynamics can occur. Our framework provides the first unifying approach to model cooperation in different kinds of social dilemmas.  相似文献   

4.
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals’ cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner’s dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.  相似文献   

5.
Public goods games paraphrase the problem of cooperation in game theoretical terms. Cooperators contribute to a public good and thereby increase the welfare of others at a cost to themselves. Defectors consume the public good but do not pay its cost and therefore outperform cooperators. Hence, according to genetic or cultural evolution, defectors should be favored and the public good disappear – despite the fact that groups of cooperators are better off than groups of defectors. The maximization of short term individual profits causes the demise of the common resource to the detriment of all. This outcome can be averted by introducing incentives to cooperate. Negative incentives based on the punishment of defectors efficiently stabilize cooperation once established but cannot initiate cooperation. Here we consider the complementary case of positive incentives created by allowing individuals to reward those that contribute to the public good. The finite-population stochastic dynamics of the public goods game with reward demonstrate that reward initiates cooperation by providing an escape hatch out of states of mutual defection. However, in contrast to punishment, reward is unable to stabilize cooperation but, instead, gives rise to a persistent minority of cooperators.  相似文献   

6.
The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical models for cooperation in evolutionary game theory, such as the Prisoner's Dilemma and public goods games. Traditional approaches to studying the problem of cooperation assume constant population sizes and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games, cooperation can gain a foothold if the population density depends on the average population payoff. Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game dynamics can generate stable coexistence of cooperators and defectors in public goods games. However, this mechanism fails for pairwise Prisoner's Dilemma interactions and the population is driven to extinction. Our model represents natural extension of replicator dynamics to populations of varying densities.  相似文献   

7.
The public goods game represents a straightforward generalization of the prisoner's dilemma to an arbitrary number of players. Since the dominant strategy is to defect, both classical and evolutionary game theory predict the asocial outcome that no player contributes to the public goods. In contrast to the compulsory public goods game, optional participation provides a natural way to avoid deadlocks in the state of mutual defection. The three resulting strategies--collaboration or defection in the public goods game, as well as not joining at all--are studied by means of a replicator dynamics, which can be completely analysed in spite of the fact that the payoff terms are nonlinear. If cooperation is valuable enough, the dynamics exhibits a rock-scissors-paper type of cycling between the three strategies, leading to sizeable average levels of cooperation in the population. Thus, voluntary participation makes cooperation feasible. But for each strategy, the average payoff value remains equal to the earnings of those not participating in the public goods game.  相似文献   

8.
The Public Goods Game is one of the most popular models for studying the origin and maintenance of cooperation. In its simplest form, this evolutionary game has two regimes: defection goes to fixation if the multiplication factor r is smaller than the interaction group size N, whereas cooperation goes to fixation if the multiplication factor r is larger than the interaction group size N. Hauert et al. [Hauert, C., Holmes, M., Doebeli, M., 2006a. Evolutionary games and population dynamics: Maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B 273, 2565-2570] have introduced the Ecological Public Goods Game by viewing the payoffs from the evolutionary game as birth rates in a population dynamic model. This results in a feedback between ecological and evolutionary dynamics: if defectors are prevalent, birth rates are low and population densities decline, which leads to smaller interaction groups for the Public Goods game, and hence to dominance of cooperators, with a concomitant increase in birth rates and population densities. This feedback can lead to stable co-existence between cooperators and defectors. Here we provide a detailed analysis of the dynamics of the Ecological Public Goods Game, showing that the model exhibits various types of bifurcations, including supercritical Hopf bifurcations, which result in stable limit cycles, and hence in oscillatory co-existence of cooperators and defectors. These results show that including population dynamics in evolutionary games can have important consequences for the evolutionary dynamics of cooperation.  相似文献   

9.
In the animal world, performing a given task which is beneficial to an entire group requires the cooperation of several individuals of that group who often share the workload required to perform the task. The mathematical framework to study the dynamics of collective action is game theory. Here we study the evolutionary dynamics of cooperators and defectors in a population in which groups of individuals engage in N-person, non-excludable public goods games. We explore an N-person generalization of the well-known two-person snowdrift game. We discuss both the case of infinite and finite populations, taking explicitly into consideration the possible existence of a threshold above which collective action is materialized. Whereas in infinite populations, an N-person snowdrift game (NSG) leads to a stable coexistence between cooperators and defectors, the introduction of a threshold leads to the appearance of a new interior fixed point associated with a coordination threshold. The fingerprints of the stable and unstable interior fixed points still affect the evolutionary dynamics in finite populations, despite evolution leading the population inexorably to a monomorphic end-state. However, when the group size and population size become comparable, we find that spite sets in, rendering cooperation unfeasible.  相似文献   

10.
Collective action, or the large-scale cooperation in the pursuit of public goods, has been suggested to have evolved through cultural group selection. Previous research suggests that the costly punishment of group members who do not contribute to public goods plays an important role in the resolution of collective action dilemmas. If large-scale cooperation sustained by the punishment of defectors has evolved through the mechanism of cultural group selection, two implications regarding costly punishment follow: (1) that people are more willing to punish defecting group members in a situation of intergroup competition than in a single-group social dilemma game and (2) that levels of "perverse" punishment of cooperators are not affected by intergroup competition. We find confirmation for these hypotheses. However, we find that the effect of intergroup competition on the punishment of defectors is fully explained by the stronger conditionality of punishment on expected punishment levels in the competition condition.  相似文献   

11.
Voluntary participation in public goods games (PGGs) has turned out to be a simple but effective mechanism for promoting cooperation under full anonymity. Voluntary participation allows individuals to adopt a risk-aversion strategy, termed loner. A loner refuses to participate in unpromising public enterprises and instead relies on a small but fixed pay-off. This system leads to a cyclic dominance of three pure strategies, cooperators, defectors and loners, but at the same time, there remain two considerable restrictions: the addition of loners cannot stabilize the dynamics and the time average pay-off for each strategy remains equal to the pay-off of loners. Here, we introduce probabilistic participation in PGGs from the standpoint of diversification of risk, namely simple mixed strategies with loners, and prove the existence of a dynamical regime in which the restrictions ono longer hold. Considering two kinds of mixed strategies associated with participants (cooperators or defectors) and non-participants (loners), we can recover all basic evolutionary dynamics of the two strategies: dominance; coexistence; bistability; and neutrality, as special cases depending on pairs of probabilities. Of special interest is that the expected pay-off of each mixed strategy exceeds the pay-off of loners at some interior equilibrium in the coexistence region.  相似文献   

12.
Understanding the emergence of cooperation is a central issue in evolutionary game theory. The hardest setup for the attainment of cooperation in a population of individuals is the Public Goods game in which cooperative agents generate a common good at their own expenses, while defectors “free-ride” this good. Eventually this causes the exhaustion of the good, a situation which is bad for everybody. Previous results have shown that introducing reputation, allowing for volunteer participation, punishing defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here we present a model which shows how the introduction of rare, malicious agents - that we term jokers - performing just destructive actions on the other agents induce bursts of cooperation. The appearance of jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of destructive agents acting indiscriminately promotes cooperation.  相似文献   

13.
We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.  相似文献   

14.
Brown SP  Taddei F 《PloS one》2007,2(7):e593
An implicit assumption underpins basic models of the evolution of cooperation, mutualism and altruism: The benefits (or pay-offs) of cooperation and defection are defined by the current frequency or distribution of cooperators. In social dilemmas involving durable public goods (group resources that can persist in the environment-ubiquitous from microbes to humans) this assumption is violated. Here, we examine the consequences of relaxing this assumption, allowing pay-offs to depend on both current and past numbers of cooperators. We explicitly trace the dynamic of a public good created by cooperators, and define pay-offs in terms of the current public good. By raising the importance of cooperative history in determining the current fate of cooperators, durable public goods cause novel dynamics (e.g., transient increases in cooperation in Prisoner's Dilemmas, oscillations in Snowdrift Games, or shifts in invasion thresholds in Stag-hunt Games), while changes in durability can transform one game into another, by moving invasion thresholds for cooperation or conditions for coexistence with defectors. This enlarged view challenges our understanding of social cheats. For instance, groups of cooperators can do worse than groups of defectors, if they inherit fewer public goods, while a rise in defectors no longer entails a loss of social benefits, at least not in the present moment (as highlighted by concerns over environmental lags). Wherever durable public goods have yet to reach a steady state (for instance due to external perturbations), the history of cooperation will define the ongoing dynamics of cooperators.  相似文献   

15.
Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical models such as the prisoner's dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately (Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more general, we demonstrate that in prisoner's dilemma type interactions spatial structure benefits cooperation-although the parameter range is quite limited-whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be detrimental to cooperation.  相似文献   

16.
Everybody has heard of neighbours, who have been fighting over some minor topic for years. The fight goes back and forth, giving the neighbours a hard time. These kind of reciprocal punishments are known as vendettas and they are a cross-cultural phenomenon. In evolutionary biology, punishment is seen as a mechanism for maintaining cooperative behaviour. However, this notion of punishment excludes vendettas. Vendettas pose a special kind of evolutionary problem: they incur high costs on individuals, i.e. costs of punishing and costs of being punished, without any benefits. Theoretically speaking, punishment should be rare in dyadic relationships and vendettas would not evolve under natural selection. In contrast, punishment is assumed to be more efficient in group environments which then can pave the way for vendettas. Accordingly, we found that under the experimental conditions of a prisoner’s dilemma game, human participants punished only rarely and vendettas are scarce. In contrast, we found that participants retaliated frequently in the group environment of a public goods game. They even engaged in cost-intense vendettas (i.e. continuous retaliation), especially when the first punishment was unjustified or ambiguous. Here, punishment was mainly targeted at defectors in the beginning, but provocations led to mushrooming of counter-punishments. Despite the counter-punishing behaviour, participants were able to enhance cooperation levels in the public goods game. Few participants even seemed to anticipate the outbreak of costly vendettas and delayed their punishment to the last possible moment. Overall, our results highlight the importance of different social environments while studying punishment as a cooperation-enhancing mechanism.  相似文献   

17.
Public goods games have become the mathematical metaphor for game theoretical investigations of cooperative behavior in groups of interacting individuals. Cooperation is a conundrum because cooperators make a sacrifice to benefit others at some cost to themselves. Exploiters or defectors reap the benefits and forgo costs. Despite the fact that groups of cooperators outperform groups of defectors, Darwinian selection or utilitarian principles based on rational choice should favor defectors. In order to overcome this social dilemma, much effort has been expended for investigations pertaining to punishment and sanctioning measures against defectors. Interestingly, the complementary approach to create positive incentives and to reward cooperation has received considerably less attention—despite being heavily advocated in education and social sciences for increasing productivity or preventing conflicts. Here we show that rewards can indeed stimulate cooperation in interaction groups of arbitrary size but, in contrast to punishment, fail to stabilize it. In both cases, however, reputation is essential. The combination of reward and reputation result in complex dynamics dominated by unpredictable oscillations.  相似文献   

18.
Understanding human institutions, animal cultures and other social systems requires flexible formalisms that describe how their members change them from within. We introduce a framework for modelling how agents change the games they participate in. We contrast this between-game ‘institutional evolution’ with the more familiar within-game ‘behavioural evolution’. We model institutional change by following small numbers of persistent agents as they select and play a changing series of games. Starting from an initial game, a group of agents trace trajectories through game space by navigating to increasingly preferable games until they converge on ‘attractor’ games. Agents use their ‘institutional preferences'' for game features (such as stability, fairness and efficiency) to choose between neighbouring games. We use this framework to pose a pressing question: what kinds of games does institutional evolution select for; what is in the attractors? After computing institutional change trajectories over the two-player space, we find that attractors have disproportionately fair outcomes, even though the agents who produce them are strictly self-interested and indifferent to fairness. This seems to occur because game fairness co-occurs with the self-serving features these agents do actually prefer. We thus present institutional evolution as a mechanism for encouraging the spontaneous emergence of cooperation among small groups of inherently selfish agents, without space, reputation, repetition, or other more familiar mechanisms. Game space trajectories provide a flexible, testable formalism for modelling the interdependencies of behavioural and institutional evolutionary processes, as well as a mechanism for the evolution of cooperation.  相似文献   

19.
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.  相似文献   

20.
Indirect reciprocity potentially provides an important means for generating cooperation based on helping those who help others. However, the use of ‘image scores’ to summarize individuals’ past behaviour presents a dilemma: individuals withholding help from those of low image score harm their own reputation, yet giving to defectors erodes cooperation. Explaining how indirect reciprocity could evolve has therefore remained problematic. In all previous treatments of indirect reciprocity, individuals are assigned potential recipients and decide whether to cooperate or defect based on their reputation. A second way of achieving discrimination is through partner choice, which should enable individuals to avoid defectors. Here, I develop a model in which individuals choose to donate to anyone within their group, or to none. Whereas image scoring with random pairing produces cycles of cooperation and defection, with partner choice there is almost maximal cooperation. In contrast to image scoring with random pairing, partner choice results in almost perfect contingency, producing the correlation between giving and receiving required for cooperation. In this way, partner choice facilitates much higher and more stable levels of cooperation through image scoring than previously reported and provides a simple mechanism through which systems of helping those who help others can work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号