首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.  相似文献   

8.
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.  相似文献   

9.
Vegetative hyphal fusion (VHF) is a ubiquitous phenomenon in filamentous fungi whose biological role is poorly understood. In Neurospora crassa, the mitogen-activated protein kinase (MAPK) Mak-2 and the WW domain protein So are required for efficient VHF. A MAPK orthologous to Mak-2, Fmk1, was previously shown to be essential for root penetration and pathogenicity of the vascular wilt fungus Fusarium oxysporum. Here we took a genetic approach to test two hypotheses, that (i) VHF and plant infection have signaling mechanisms in common and (ii) VHF is required for efficient plant infection. F. oxysporum mutants lacking either Fmk1 or Fso1, an orthologue of N. crassa So, were impaired in the fusion of vegetative hyphae and microconidial germ tubes. Δfmk1 Δfso1 double mutants exhibited a more severe fusion phenotype than either single mutant, indicating that the two components function in distinct pathways. Both Δfso1 and Δfmk1 strains were impaired in the formation of hyphal networks on the root surface, a process associated with extensive VHF. The Δfso1 mutants exhibited slightly reduced virulence in tomato fruit infection assays but, in contrast to Δfmk1 strains, were still able to perform functions associated with invasive growth, such as secretion of pectinolytic enzymes or penetration of cellophane sheets, and to infect tomato plants. Thus, although VHF per se is not essential for plant infection, both processes have some signaling components in common, suggesting an evolutionary relationship between the underlying cellular mechanisms.  相似文献   

10.
11.
Oxalic acid is an important virulence factor produced by phytopathogenic filamentous fungi. In order to discover yeast genes whose orthologs in the pathogen may confer self-tolerance and whose plant orthologs may protect the host, a Saccharomyces cerevisiae deletion library consisting of 4,827 haploid mutants harboring deletions in nonessential genes was screened for growth inhibition and survival in a rich medium containing 30 mM oxalic acid at pH 3. A total of 31 mutants were identified that had significantly lower cell yields in oxalate medium than in an oxalate-free medium. About 35% of these mutants had not previously been detected in published screens for sensitivity to sorbic or citric acid. Mutants impaired in endosomal transport, the rgp1Δ, ric1Δ, snf7Δ, vps16Δ, vps20Δ, and vps51Δ mutants, were significantly overrepresented relative to their frequency among all verified yeast open reading frames. Oxalate exposure to a subset of five mutants, the drs2Δ, vps16Δ, vps51Δ, ric1Δ, and rib4Δ mutants, was lethal. With the exception of the rib4Δ mutant, all of these mutants are impaired in vesicle-mediated transport. Indirect evidence is provided suggesting that the sensitivity of the rib4Δ mutant, a riboflavin auxotroph, is due to oxalate-mediated interference with riboflavin uptake by the putative monocarboxylate transporter Mch5.  相似文献   

12.
Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair.  相似文献   

13.
Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection.  相似文献   

14.
Microbial secretion is integral for regulating cell homeostasis as well as releasing virulence factors during infection. The genes encoding phosphatidylserine synthase (CHO1) and phosphatidylserine decarboxylase (PSD1 and PSD2) are Candida albicans genes involved in phospholipid biosynthesis, and mutations in these genes affect mitochondrial function, cell wall thickness, and virulence in mice. We tested the roles of these genes in several agar-based secretion assays and observed that the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ strains manifested less protease and phospholipase activity. Since extracellular vesicles (EVs) are surrounded by a lipid membrane, we investigated the effects of these mutations on EV structure, composition, and biological activity. The cho1Δ/Δ mutant releases EVs comparable in size to wild-type EVs, but EVs from the psd1Δ/Δ psd2Δ/Δ strain are much larger than those from the wild type, including a population of >100-nm EVs not observed in the EVs from the wild type. Proteomic analysis revealed that EVs from both mutants had a significantly different protein cargo than that of EVs from the wild type. EVs were tested for their ability to activate NF-κB in bone marrow-derived macrophage cells. While wild-type and psd1Δ/Δ psd2Δ/Δ mutant-derived EVs activated NF-κB, the cho1Δ/Δ mutant-derived EV did not. These studies indicate that the presence and absence of these C. albicans genes have qualitative and quantitative effects on EV size, composition, and immunostimulatory phenotypes that highlight a complex interplay between lipid metabolism and vesicle production.  相似文献   

15.
A deletion of the sigB operon was constructed in three genetically distinct Staphylococcus aureus strains, and the phenotypes of the resulting mutants were analyzed. Compared to the corresponding wild-type strains, the ΔsigB mutants showed reduced pigmentation, accelerated sedimentation, and increased sensitivity to hydrogen peroxide during the stationary growth phase. A cytoplasmic protein missing in the ΔsigB mutants was identified as alkaline shock protein 23, and an extracellular protein excreted at higher levels in one of the ΔsigB mutants was identified as staphylococcal thermonuclease. Interestingly, most sigB deletion phenotypes were only seen in S. aureus COL and Newman and not in 8325, which was found to contain an 11-bp deletion in the regulator gene rsbU. Taken together, our results show that ςB is a global regulator which modulates the expression of several virulence factors in S. aureus and that laboratory strain 8325 is a ςB-defective mutant.  相似文献   

16.
17.
Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Δ, yvh1Δ, sit4Δ, and ptc1Δ) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Δ, yvh1Δ, and sit4Δ mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Δ revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.  相似文献   

18.
Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within the ferrous iron (feo) and ferric-siderophore (fsl) uptake systems of the live vaccine strain (LVS). The Feo system was disrupted by a partial deletion of the feoB gene (ΔfeoB′), which led to a growth defect on iron-limited modified Muller Hinton agar plates. 55Fe uptake assays verified that the ΔfeoB′ mutant had lost the capacity for ferrous iron uptake but was still competent for 55Fe-siderophore-mediated ferric iron acquisition. Neither the ΔfeoB′ nor the siderophore-deficient ΔfslA mutant was defective for replication within J774A.1 murine macrophage-like cells, thus demonstrating the ability of LVS to survive using either ferrous or ferric sources of intracellular iron. A LVS ΔfslA ΔfeoB′ mutant defective for both ferrous iron uptake and siderophore production was isolated in the presence of exogenous F. tularensis siderophore. In contrast to the single deletion mutants, the ΔfslA ΔfeoB′ mutant was unable to replicate within J774A.1 cells and was attenuated in virulence following intraperitoneal infection of C57BL/6 mice. These studies demonstrate that the siderophore and feoB-mediated ferrous uptake systems are the only significant iron acquisition systems in LVS and that they operate independently. While one system can compensate for loss of the other, both are required for optimal growth and virulence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号