首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.Eucaryotic cells are able to define and maintain a particular cellular organization and thus cellular morphology by executing programs modulated by internal and external signals. For example, signals generated within a cell are required for the selection of the growth zone after cytokinesis in the fission yeast Schizosaccharomyces pombe or the emergence of the bud in Saccharomyces cerevisiae (37, 44, 81). Cellular morphogenesis is also subject to regulation by a wide variety of external signals, such as growth factors, temperature, hormones, nutrient limitation, and cell-cell or cell-substrate contact (13, 34, 66, 75, 81). Both types of signals will lead to the selection of growth zones accompanied by the reorganization of the cytoskeleton.The ability to alter the growth form in response to environmental conditions is an important virulence-associated trait of pathogenic fungi which helps the pathogen to spread in and survive the host''s defense system (7, 32). Alteration of the growth form in response to extrinsic signals is not limited to pathogenic fungi but is also found in the model yeasts S. cerevisiae and S. pombe, in which it appears to represent a foraging response (1, 24).The regulation of polarized growth and the definition of growth zones have been studied extensively with the fission yeast S. pombe. In this cylindrically shaped organism, cell wall biosynthesis is restricted to one or both cell ends in a cell cycle-regulated manner and to the septum during cytokinesis (38). This mode of growth requires the actin cytoskeleton to direct growth and the microtubule cytoskeleton to define the growth sites (60). In interphase cells, microtubules are organized in antiparallel bundles that are aligned along the long axis of the cell and grow from their plus ends toward the cell tips. Upon contact with the cell end, microtubule growth will first pause and then undergo a catastrophic event and microtubule shrinkage (21). This dynamic behavior of the microtubule plus end is regulated by a disparate, conserved, microtubule plus end group of proteins, called the +TIPs. The +TIP complex containing the EB1 family member Mal3 is required for the delivery of the Tea1-Tea4 complex to the cell tip (6, 11, 27, 45, 77). The latter complex docks at the cell end and recruits proteins required for actin nucleation (46, 76). Thus, the intricate cross talk between the actin and the microtubule cytoskeleton at specific intracellular locations is necessary for cell cycle-dependent polarized growth of the fission yeast cell.The intense analysis of polarized growth control in single-celled S. pombe makes this yeast an attractive organism for the identification of key regulatory components of the dimorphic switch. S. pombe multicellular invasive growth has been observed for specific strains under specific conditions, such as nitrogen and ammonium limitation and the presence of excess iron (1, 19, 50, 61).Here, we have identified an evolutionarily conserved key regulator of the S. pombe dimorphic switch, the Asp1 protein. Asp1 belongs to the highly conserved family of Vip1 1/3 inositol polyphosphate kinases, which is one of two families that can generate inositol pyrophosphates (PP) (17, 23, 42, 54). The inositol polyphosphate kinase IP6K family, of which the S. cerevisiae Kcs1 protein is a member, is the “classical” family that can phosphorylate inositol hexakisphosphate (IP6) (70, 71). These enzymes generate a specific PP-IP5 (IP7), which has the pyrophosphate at position 5 of the inositol ring (20, 54). The Vip1 family kinase activity was unmasked in an S. cerevisiae strain with KCS1 and DDP1 deleted (54, 83). The latter gene encodes a nudix hydrolase (14, 68). The mammalian and S. cerevisiae Vip1 proteins phosphorylate the 1/3 position of the inositol ring, generating 1/3 diphosphoinositol pentakisphosphate (42). Both enzyme families collaborate to generate IP8 (17, 23, 42, 54, 57).Two modes of action have been described for the high-energy moiety containing inositol pyrophosphates. First, these molecules can phosphorylate proteins by a nonenzymatic transfer of a phosphate group to specific prephosphorylated serine residues (2, 8, 69). Second, inositol pyrophosphates can regulate protein function by reversible binding to the S. cerevisiae Pho80-Pho85-Pho81 complex (39, 40). This cyclin-cyclin-dependent kinase complex is inactivated by inositol pyrophosphates generated by Vip1 when cells are starved of inorganic phosphate (39, 41, 42).Regulation of phosphate metabolism in S. cerevisiae is one of the few roles specifically attributed to a Vip1 kinase. Further information about the cellular function of this family came from the identification of the S. pombe Vip1 family member Asp1 as a regulator of the actin nucleator Arp2/3 complex (22). The 106-kDa Asp1 cytoplasmic protein, which probably exists as a dimer in vivo, acts as a multicopy suppressor of arp3-c1 mutants (22). Loss of Asp1 results in abnormal cell morphology, defects in polarized growth, and aberrant cortical actin cytoskeleton organization (22).The Vip1 family proteins have a dual domain structure which consists of an N-terminal “rimK”/ATP-grasp superfamily domain found in certain inositol signaling kinases and a C-terminal part with homology to histidine acid phosphatases present in phytase enzymes (28, 53, 54). The N-terminal domain is required and sufficient for Vip1 family kinase activity, and an Asp1 variant with a mutation in a catalytic residue of the kinase domain is unable to suppress mutants of the Arp2/3 complex (17, 23, 54). To date, no function has been described for the C-terminal phosphatase domain, and this domain appears to be catalytically inactive (17, 23, 54).Here we describe a new and conserved role for Vip1 kinases in regulating the dimorphic switch in yeasts. Asp1 kinase activity is essential for cell-cell and cell-substrate adhesion and the ability of S. pombe cells to grow invasively. Interestingly, Asp1 kinase activity is counteracted by the putative phosphatase domain of this protein, a finding that allows us to describe for the first time a function for the C-terminal part of Vip1 proteins.  相似文献   

2.
Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4−/− mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4−/− mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.  相似文献   

3.
The inositol 1,3,4,5,6-pentakisphosphate (IP5) 2-kinase (Ipk1) catalyzes the production of inositol hexakisphosphate (IP6) in eukaryotic cells. Previous studies have shown that IP6 is required for efficient nuclear mRNA export in the budding yeast Saccharomyces cerevisiae. Here, we report the first functional analysis of ipk1+ in Schizosaccharomyces pombe. S. pombe Ipk1 (SpIpk1) is unique among Ipk1 orthologues in that it harbors a novel amino (N)-terminal domain with coiled-coil structural motifs similar to those of BAR (Bin-amphiphysin-Rvs) domain proteins. Mutants with ipk1+ deleted (ipk1Δ) had mRNA export defects as well as pleiotropic defects in polarized growth, cell morphology, endocytosis, and cell separation. The SpIpk1 catalytic carboxy-terminal domain was required to rescue these defects, and the mRNA export block was genetically linked to SpDbp5 function and, likely, IP6 production. However, the overexpression of the N-terminal domain alone also inhibited these functions in wild-type cells. This revealed a distinct noncatalytic function for the N-terminal domain. To test for connections with other inositol polyphosphates, we also analyzed whether the loss of asp1+ function, encoding an IP6 kinase downstream of Ipk1, had an effect on ipk1Δ cells. The asp1Δ mutant alone did not block mRNA export, and its cell morphology, polarized growth, and endocytosis defects were less severe than those of ipk1Δ cells. Moreover, ipk1Δ asp1Δ double mutants had altered inositol polyphosphate levels distinct from those of the ipk1Δ mutant. This suggested novel roles for asp1+ upstream of ipk1+. We propose that IP6 production is a key signaling linchpin for regulating multiple essential cellular processes.  相似文献   

4.
5.
The chromosomal passenger complex (CPC) is a key regulator of mitosis in eukaryotes. It comprises four essential and conserved proteins known in mammals/yeasts as Aurora B/Ipl1, INCENP/Sli15, Survivin/Bir1, and Borealin/Nbl1. These subunits act together in a highly controlled fashion. Regulation of Aurora B/Ipl1 kinase activity and localization is critical for CPC function. Although regulation of CPC localization and kinase activity in vivo has been investigated elsewhere, studies on the complete, four-subunit CPC and its basic biochemical properties are only beginning. Here we describe the biochemical characterization of purified and complete Saccharomyces cerevisiae four-subunit CPC. We determined the affinity of the CPC for microtubules and demonstrated that the binding of CPC to microtubules is primarily electrostatic in nature and depends on the acidic C-terminal tail (E-hook) of tubulin. Moreover, phosphorylation of INCENP/Sli15 on its microtubule binding region also negatively regulates CPC affinity for microtubules. Furthermore, we show that phosphorylation of INCENP/Sli15 is required for activation of the kinase Aurora B/Ipl1 and can occur in trans. Although phosphorylation of INCENP/Sli15 is essential for activation, we determined that a version of the CPC lacking the INCENP/Sli15 microtubule binding region (residues Glu-91 to Ile-631) is able to form an intact complex that retains microtubule binding activity. Thus, we conclude that this INCENP/Sli15 linker domain plays a largely regulatory function and is not essential for complex formation or microtubule binding.  相似文献   

6.
The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.  相似文献   

7.
  1. Download : Download high-res image (182KB)
  2. Download : Download full-size image
Highlights
  • •Insulin Affects the Phosphorylation of G2L1, MARK2, CLIP2, EB1, AGAP3, and CKAP5.
  • •Insulin Increases CLASP2 +TIP Density and Decreases CLASP2 +TIP Velocity.
  • •Insulin Stimulates CLASP2 and G2L1 Trailing Along Microtubules.
  • •Insulin Stimulates α-Tubulin Acetylation at Lysine 40 and Microtubule Stabilization.
  相似文献   

8.
9.
Rice LTRPK1, which encodes a member of the casein kinase I family, has been reported to be involved in root development, hormone response, and metabolic processes. Here we further show that LTRPK1 participates in stress resistance by regulating cytoskeleton rearrangement and formation of cold tolerance and adaptation. Semiquantitative RT-PCR analysis revealed enhanced expression of LTRPK1 in plants subject to low-temperature stress at 4 °C, suggesting a role in low-temperature-related cell responses and signal transduction pathways. Further analysis of LTRPK1-deficient transgenic plants showed that under low-temperature treatment, the growth rate of transgenic plant primary roots, which is commonly used as an indicator for cold stress response abilities, was less inhibited than that of control plants. Moreover, damage to the plasma membrane of root cells in LTRPK1-deficient plants was greater than that of controls as measured by relative electrical conductivity (REC). The malondialdehyde (MDA) content of LTRPK1-deficient plants also increased over that of the control, indicating increased plasma membrane permeability. Further immunofluorescence localization observations indicated that microtubules of transgenic plants subject to low temperature disassembled more rapidly, whereas the control plant microtubules in most cells of the root elongation zone kept their normal habitus, which suggested that LTRPK1-deficient plants had reduced capacity to resist low-temperature stress through regulation of microtubule assembly. These results demonstrate involvement of LTRPK1 in low-temperature stress and provide new insight for rice breeding and germplasm innovation to improve crop cold tolerance.  相似文献   

10.
Abstract: The regional distribution of inositol 1,4,5-trisphosphate (InsP3), inositol 1,3,4,5-tetrakisphosphate (InsP4), and ryanodine binding sites has been characterised and compared in the rat brain using radioligand binding assays. Cortical [3H]InsP3 binding indicated similar positional and stereospecificity as observed in other tissues, with 100-fold selectivity for lnsP3 over InsP4. Similarly, high-affinity [32P]InsP4 binding also showed a high degree of positional specificity, with a 1,000-fold selectivity for InsP4 over InsP3. Initial characterisation of [3H]ryanodine binding to cortical membranes demonstrated that specific binding was highly dependent on high salt and micromolar Ca2+ concentrations and inhibited by Ca2+ levels of >1 mM. [3H]-Ryanodine binding was also enhanced by β,γ-methylene-adenosine 5′-trisphosphate and caffeine and inhibited by magnesium and ruthenium red (Ki= 0.81 μM). However, dantrolene (300 μM) was ineffective on the binding. Therefore, although the results indicate a greater similarity to the binding properties of the Ca2+-induced Ca2+ release channel isoform present in skeletal, rather than cardiac, muscle, it does not appear to be identical. Detailed binding analysis of ryanodine and polyphosphate sites, with the exception of ruthenium red, indicated no interaction between binding sites. Ruthenium red markedly enhanced the binding of both [3H]InsP3 and [32P]InsP4, an effect most probably due to nonspecific complex formation. Regional binding of InP3, InsP4, and ryanodine in the rat brain was of similar affinity for each ligand in each area, but the density profile for each ligand was clearly different. The highest density of InsP3 sites was in the cerebellum, whereas the highest density of ryanodine sites was in the hippocampus. High-affinity InsP4 sites showed less regional diversity, with highest densities in the cerebellum, cortex, and hippocampus. However, in each area studied the density of sites followed the order InsP3 > InsP4 > ryanodine.  相似文献   

11.
12.
The cyclic AMP (cAMP)-protein kinase A (PKA) signaling activates virulence expression during hyphal development in the fungal human pathogen Candida albicans. The hyphal growth is characterized by Golgi polarization toward the hyphal tips, which is thought to enhance directional vesicle transport. However, how the hypha-induction signal regulates Golgi polarization is unknown. Gyp1, a Golgi-associated protein and the first GTPase-activating protein (GAP) in the Rab GAP cascade, critically regulates membrane trafficking from the endoplasmic reticulum to the plasma membrane. Here, we report a novel pathway by which the cAMP-PKA signaling triggers Golgi polarization during hyphal growth. We demonstrate that Gyp1 plays a crucial role in actin-dependent Golgi polarization. Hyphal induction activates PKA, which in turn phosphorylates Gyp1. Phosphomimetic mutation of four PKA sites identified by mass spectrometry (Gyp14E) caused strong Gyp1 polarization to hyphal tips, whereas nonphosphorylatable mutations (Gyp14A) abolished it. Gyp14E exhibited enhanced association with the actin motor Myo2, while Gyp14A showed the opposite effect, providing a possible mechanism for Golgi polarization. A GAP-dead Gyp1 (Gyp1R292K) showed strong polarization similar to that seen with Gyp14E, indicating a role for the GAP activity. Mutating the PKA sites on Gyp1 also impaired the recruitment of a late Golgi marker, Sec7. Furthermore, proper PKA phosphorylation and GAP activity of Gyp1 are required for virulence in mice. We propose that the cAMP-PKA signaling directly targets Gyp1 to promote Golgi polarization in the yeast-to-hypha transition, an event crucial for C. albicans infection.  相似文献   

13.
Kinetochores are conserved protein complexes that bind the replicated chromosomes to the mitotic spindle and then direct their segregation. To better comprehend Saccharomyces cerevisiae kinetochore function, we dissected the phospho-regulated dynamic interaction between conserved kinetochore protein Cnn1CENP-T, the centromere region, and the Ndc80 complex through the cell cycle. Cnn1 localizes to kinetochores at basal levels from G1 through metaphase but accumulates abruptly at anaphase onset. How Cnn1 is recruited and which activities regulate its dynamic localization are unclear. We show that Cnn1 harbors two kinetochore-localization activities: a C-terminal histone-fold domain (HFD) that associates with the centromere region and a N-terminal Spc24/Spc25 interaction sequence that mediates linkage to the microtubule-binding Ndc80 complex. We demonstrate that the established Ndc80 binding site in the N terminus of Cnn1, Cnn160–84, should be extended with flanking residues, Cnn125–91, to allow near maximal binding affinity to Ndc80. Cnn1 localization was proposed to depend on Mps1 kinase activity at Cnn1–S74, based on in vitro experiments demonstrating the Cnn1Ndc80 complex interaction. We demonstrate that from G1 through metaphase, Cnn1 localizes via both its HFD and N-terminal Spc24/Spc25 interaction sequence, and deletion or mutation of either region results in anomalous Cnn1 kinetochore levels. At anaphase onset (when Mps1 activity decreases) Cnn1 becomes enriched mainly via the N-terminal Spc24/Spc25 interaction sequence. In sum, we provide the first in vivo evidence of Cnn1 preanaphase linkages with the kinetochore and enrichment of the linkages during anaphase.  相似文献   

14.
In metazoans, the highly conserved MAPK signaling pathway regulates cell fate decision. Aberrant activation of this pathway has been implicated in multiple human cancers and some developmental disorders. KSR1 functions as an essential scaffold that binds the individual components of the cascade and coordinates their assembly into multiprotein signaling platforms. The mechanism of KSR1 regulation is highly complex and not completely understood. In this study, we identified Tyr728 as a novel regulatory phosphorylation site in KSR1. We show that Tyr728 is phosphorylated by LCK, uncovering an additional and unexpected link between Src kinases and MAPK signaling. To understand how phosphorylation of Tyr728 may regulate the role of KSR1 in signal transduction, we integrated structural modeling and biochemical studies. We demonstrate that Tyr728 is involved in maintaining the conformation of the KSR1 kinase domain required for binding to MEK. It also affects phosphorylation and activation of MEK by RAF kinases and consequently influences cell proliferation. Moreover, our studies suggest that phosphorylation of Tyr728 may affect the intrinsic kinase activity of KSR1. Together, we propose that phosphorylation of Tyr728 may regulate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses.  相似文献   

15.
16.
17.
18.
19.
Aspergillus fumigatus is an opportunistic human pathogenic fungus causing severe infections in immunocompromised patients. Cyclic AMP (cAMP) signal transduction plays an important role in virulence. A central component of this signaling cascade is protein kinase A (PKA), which regulates cellular processes by phosphorylation of specific target proteins. Here we describe the generation and analysis of A. fumigatus mutants expressing the gene encoding the catalytic subunit of PKA, pkaC1, under control of an inducible promoter. Strains overexpressing pkaC1 showed high PKA activity, reduced growth, sporulation deficiency, and formation of a dark pigment in the mycelium. These data indicate that cAMP-PKA signaling is involved in the regulation of important processes, such as growth, asexual reproduction, and biosynthesis of secondary metabolites. Furthermore, elevated PKA activity led to increased expression of the pksP gene. The polyketide synthase PksP is an essential enzyme for production of dihydroxynaphthalene-melanin in A. fumigatus and contributes to virulence. Our results suggest that increased pksP expression is responsible for pigment formation in the mycelium. Comparative proteome analysis of the pkaC1-overexpressing strain and the wild-type strain led to the identification of proteins regulated by the cAMP-PKA signal transduction pathway. We showed that elevated PKA activity resulted in activation of stress-associated proteins and of enzymes involved in protein biosynthesis and glucose catabolism. In contrast, proteins which were involved in nucleotide and amino acid biosynthesis were downregulated, as were enzymes involved in catabolism of carbon sources other than glucose.  相似文献   

20.
Hemidesmosomes (HDs) mediate adhesion of epithelial cells to the extracellular matrix and have morphological associations with intermediate-size filaments (IFs). Hemidesmosomal molecular components including HD1, the two bullous pemphigoid antigens, and the integrin α6β4 have been identified in HDs of stratified and complex epithelium. In this study, we report that HT29-Fu cells, a human colonic tumor cell line, express two hemidesmosomal components (HD1, α6β4) associated in an adhesion structure termed type II HDs. Immunofluorescence studies showed a colocalization of HD1 and α6β4 in basal patches between actin stress fibers. Using cytochalasin B or vinblastine, two drugs which disrupt the cytoskeleton, we demonstrate that the redistribution of HD1 was probably induced by the reorganization of the basal cytokeratin network. We also show thatin vitroHD1 binds to polymerized cytokeratin intermediate filaments; this suggests that HD1 in intestinal epithelial cells functions as a linker protein connecting cytokeratin filaments to the basal plasma membrane, probably through the β4 subunit of the integrin α6β4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号