首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae has both cytoplasmic and mitochondrial C1-tetrahydrofolate (THF) synthases. These trifunctional isozymes are central to single-carbon metabolism and are responsible for interconversion of the THF derivatives in the respective compartments. In the present work, we have used 13C NMR to study folate-mediated single-carbon metabolism in these two compartments, using glycine and serine synthesis as metabolic endpoints. The availability of yeast strains carrying deletions of cytoplasmic and/or mitochondrial C1-THF synthase allows a dissection of the role each compartment plays in this metabolism. When yeast are incubated with [13C]formate, 13C NMR spectra establish that production of [3-13C]serine is dependent on C1-THF synthase and occurs primarily in the cytosol. However, in a strain lacking cytoplasmic C1-THF synthase but possessing the mitochondrial isozyme, [13C]formate can be metabolized to [2-13C]glycine and [3-13C]serine. This provides in vivo evidence for the mitochondrial assimilation of formate, activation and conversion to [13C]CH2-THF via mitochondrial C1-THF synthase, and subsequent glycine synthesis via reversal of the glycine cleavage system. Additional supporting evidence of reversibility of GCV in vivo is the production of [2-13C]glycine and [2,3-13C]serine in yeast strains grown with [3-13C]serine. This metabolism is independent of C1-THF synthase since these products were observed in strains lacking both the cytoplasmic and mitochondrial isozymes. These results suggest that when formate is the one-carbon donor, assimilation is primarily cytoplasmic, whereas when serine serves as one-carbon donor, considerable metabolism occurs via mitochondrial pathways.  相似文献   

2.
The hydroxymethyl group of serine is a primary source of tetrahydrofolate (THF)-activated one-carbon units that are required for the synthesis of purines and thymidylate and for S-adenosylmethionine (AdoMet)-dependent methylation reactions. Serine hydroxymethyltransferase (SHMT) catalyzes the reversible and THF-dependent conversion of serine to glycine and 5,10-methylene-THF. SHMT is present in eukaryotic cells as mitochondrial SHMT and cytoplasmic (cSHMT) isozymes that are encoded by distinct genes. In this study, the essentiality of cSHMT-derived THF-activated one-carbons was investigated by gene disruption in the mouse germ line. Mice lacking cSHMT are viable and fertile, demonstrating that cSHMT is not an essential source of THF-activated one-carbon units. cSHMT-deficient mice exhibit altered hepatic AdoMet levels and uracil content in DNA, validating previous in vitro studies that indicated this enzyme regulates the partitioning of methylenetetrahydrofolate between the thymidylate and homocysteine remethylation pathways. This study suggests that mitochondrial SHMT-derived one-carbon units are essential for folate-mediated one-carbon metabolism in the cytoplasm.  相似文献   

3.
4.
Xinran Xu  Jia Chen 《遗传学报》2009,36(4):203-214
One-carbon metabolism is a network of biological reactions that plays critical role in DNA methylation and DNA synthesis, and in turn, facilitates the cross-talk between genetic and epigenetic processes. Genetic polymorphisms and supplies of cofactors (e.g. folate, vitamins B) involved in this pathway have been shown to influence cancer risk and even survival. In this review, we summarized the epidemiological evidence for one-carbon metabolism, from both genetics and lifestyle aspects, in relation to breast cancer risk. We also discussed this pathway in relation to breast cancer survival and the modulation of one-carbon polymorphism in chemotherapy. Emerging evidence on modulation of DNA methylation by one-carbon metabolism suggests that disruption of epigenome might have been the underlying mechanism. More results are expected and will be translated to guidance to the general population for disease prevention as well as to clinicians for treatment and management of the disease.  相似文献   

5.
D. A. Sinclair  I. W. Dawes 《Genetics》1995,140(4):1213-1222
Saccharomyces cerevisiae can grow on glycine as sole nitrogen source and can convert glycine to serine via the reaction catalyzed by the glycine decarboxylase multienzyme complex (GDC). Yeast strains with mutations in the single gene for lipoamide dehydrogenase (lpd1) lack GDC activity, as well as the other three 2-oxoacid dehydrogenases dependent on this enzyme. The LPD1 gene product is also required for cells to utilize glycine as sole nitrogen source. The effect of mutations in LPD1 (L-subunit of GDC), SER1 (synthesis of serine from 3-phosphoglycerate), ADE3 (cytoplasmic synthesis of one-carbon units for the serine synthesis from glycine), and all combinations of each has been determined. The results were used to devise methods for isolating mutants affected either in the generation of one-carbon units from glycine (via GDC) or subsequent steps in serine biosynthesis. The mutants fell into six complementation groups (gsd1-6 for defects in conversion of glycine to serine). Representatives from three complementation groups were also unable to grow on glycine as sole nitrogen source (gsd1-3). Assays of the rate of glycine uptake and decarboxylation have provided insights into the nature of the mutations.  相似文献   

6.
7.
One-carbon metabolism in lectin-activated human lymphocytes   总被引:1,自引:0,他引:1  
Serine is an essential amino acid for the lectin-mediated transformation of human peripheral blood lymphocytes due to the inability of this cell to synthesize sufficient quantities via either the phosphorylated pathway or by reversal of the serine hydroxymethyltransferase reaction to meet the metabolic demands. The level of intracellular serine is tightly regulated, and the culture medium concentration for optimum cellular transformation falls within a relatively narrow range. The three-carbon atom of serine is the major source of one-carbon units required for purine and pyrimidine nucleotide biosynthesis, but the key effect of both serine deprivation and of high medium serine levels would appear to be on protein synthesis. Although an alternative source of one-carbon units, as provided by high levels of formate in the culture medium, can partially reverse the effects of serine deprivation, the only other demonstrable source of one-carbon units, tryptophan, requires serine for its incorporation and subsequent metabolism. Methionine is also essential for lymphocyte transformation and is involved in the synthesis of a small amount of phosphatidylcholine, although most of this phospholipid is provided by choline and lysophosphatidylcholine from the serum-supplemented culture medium.  相似文献   

8.
In eukaryotes, enzymes responsible for the interconversion of one-carbon units exist in parallel in both mitochondria and the cytoplasm. Strains of Saccharomyces cerevisiae were constructed that possess combinations of gene disruptions at the SHM1 [mitochondrial serine hydroxymethyltransferase (SHMTm)], SHM2 [cytoplasmic SHMT (SHMTc)], MIS1 [mitochondrial C(1)-tetrahydrofolate synthase (C(1)-THFSm)], ADE3 [cytoplasmic C(1)-THF synthase (C(1)-THFSc)], GCV1 [glycine cleavage system (GCV) protein T], and the GLY1 (involved in glycine synthesis) loci. Analysis of the in vivo growth characteristics and phenotypes was used to determine the contribution to cytoplasmic nucleic acid and amino acid anabolism by the mitochondrial enzymes involved in the interconversion of folate coenzymes. The data indicate that mitochondria transport formate to the cytoplasmic compartment and mitochondrial synthesis of formate appears to rely primarily on SHMTm rather than the glycine cleavage system. The glycine cleavage system and SHMTm cooperate to specifically synthesize serine. With the inactivation of SHM1, however, the glycine cleavage system can make an observable contribution to the level of mitochondrial formate. Inactivation of SHM1, SHM2 and ADE3 is required to render yeast auxotrophic for TMP and methionine, suggesting that TMP synthesized in mitochondria may be available to the cytoplasmic compartment.  相似文献   

9.
Glycine and serine are two interconvertible amino acids that play an important role in C1 metabolism. Using 13C NMR and various 13C-labelled substrates, we studied the catabolism of each of these amino acids in non-photosynthetic sycamore cambial cells. On one hand, we observed a rapid glycine catabolism that involved glycine oxidation by the mitochondrial glycine decarboxylase (GDC) system. The methylenetetra- hydrofolate (CH2-THF) produced during this reaction did not equilibrate with the overall CH2-THF pool, but was almost totally recycled by the mitochondrial serine hydroxymethyltransferase (SHMT) for the synthesis of one serine from a second molecule of glycine. Glycine, in contrast to serine, was a poor source of C1 units for the synthesis of methionine. On the other hand, catabolism of serine was about three times lower than catabolism of glycine. Part of this catabolism presumably involved the glycolytic pathway. However, the largest part (about two-thirds) involved serine-to-glycine conversion by cytosolic SHMT, then glycine oxidation by GDC. The availability of cytosolic THF for the initial SHMT reaction is possibly the limiting factor of this catabolic pathway. These data support the view that serine catabolism in plants is essentially connected to C1 metabolism. The glycine formed during this process is rapidly oxidized by the mitochondrial GDC-SHMT enzymatic system, which is therefore required in all plant tissues.  相似文献   

10.
This report describes studies of mutant lines of cultured Chinese hamster ovary cells that have different levels of serine transhydroxymethylase (EC 2.1.2.1). This enzyme, which splits serine to yield glycine and N5,N10-methylene tetrahydrofolic acid, is found in both the mitochondria and cytosol of these cells (see Chasin et al. (1974) Proc. Nat. Acad. Sci. USA71, 718–722). Our experiments with these mutant lines have established a correlation among the amount of mitochondrial serine transhydroxymethylase, the intracellular glycine concentration, and the extent that exogenous serine increases the glycine pool. Limited amino acid incorporation into protein occurred with all cell lines, but in contrast to the glycine-requiring mutant line 51-11, revertants that no longer required glycine for growth showed increased incorporation when the medium was supplemented with serine. These results indicate that normally the mitochondrial serine transhydroxymethylase together with the intracellular serine concentration regulate the supply of glycine and under certain conditions can control the rate of protein synthesis. Additional experiments with radioactive serine and glycine have shown that the mitochondrial serine transhydroxymethylase regulates the interconversion of these amino acids as well as serine oxidation. Calculations based on the 14CO2 produced from l-[14C]serine by the mutant and parental cell lines indicate that approximately 50% of the serine oxidized is initially converted to glycine and an oxidizable one-carbon unit.  相似文献   

11.
Recent observations on cancer cell metabolism indicate increased serine synthesis from glucose as a marker of poor prognosis. We have predicted that a fraction of the synthesized serine is routed to a pathway for ATP production. The pathway is composed by reactions from serine synthesis, one-carbon (folate) metabolism and the glycine cleavage system (SOG pathway). Here we show that the SOG pathway is upregulated at the level of gene expression in a subset of human tumors and that its level of expression correlates with gene signatures of cell proliferation and Myc target activation. We have also estimated the SOG pathway metabolic flux in the NCI60 tumor-derived cell lines, using previously reported exchange fluxes and a personalized model of cell metabolism. We find that the estimated rates of reactions in the SOG pathway are highly correlated with the proliferation rates of these cell lines. We also observe that the SOG pathway contributes significantly to the energy requirements of biosynthesis, to the NADPH requirement for fatty acid synthesis and to the synthesis of purines. Finally, when the PC-3 prostate cancer cell line is treated with the antifolate methotrexate, we observe a decrease in the ATP levels, AMP kinase activation and a decrease in ribonucleotides and fatty acids synthesized from [1,2-13C2]-D-glucose as the single tracer. Taken together our results indicate that the SOG pathway activity increases with the rate of cell proliferation and it contributes to the biosynthetic requirements of purines, ATP and NADPH of cancer cells.  相似文献   

12.
One-carbon metabolism is a collection of metabolic cycles that supports methylation and provides one-carbon bound folates for the de novo synthesis of purine and thymidine nucleotides. The methylation of phosphatidylethanolamine to form choline has been extensively studied in the context of fatty liver disease. However, the role of one-carbon metabolism in supporting nucleotide synthesis during liver damage has not been addressed. The objective of this study is to determine how the disruption of one-carbon metabolism influences nucleotide metabolism in the liver after dietary methionine and choline restriction. Mice (n=8) were fed a methionine–choline-deficient or control diet for 3 weeks. We treated mice with the compound alloxazine (0.5 mg/kg), a known adenosine receptor antagonist, every second day during the final week of feeding to probe the function of adenosine signaling during liver damage. We found that concentrations of several hepatic nucleotides were significantly lower in methionine- and choline-deficient mice vs. controls (adenine: 13.9±0.7 vs. 10.1±0.6, guanine: 1.8±0.1 vs. 1.4±0.1, thymidine: 0.0122±0.0027 vs. 0.0059±0.0027 nmol/mg dry tissue). Treatment of alloxazine caused a specific decrease in thymidine nucleotides, decrease in mitochondrial content in the liver and exacerbation of steatohepatitis as shown by the increased hepatic lipid content and altered macrophage morphology. This study demonstrates a role for one-carbon metabolism in supporting de novo nucleotide synthesis and mitochondrial function during liver damage.  相似文献   

13.
In eukaryotes, folate metabolism is compartmentalized between the cytoplasm and organelles. The folate pathways of mitochondria are adapted to serve the metabolism of the organism. In yeast, mitochondria support cytoplasmic purine synthesis through the generation of formate. This pathway is important but not essential for survival, consistent with the flexibility of yeast metabolism. In plants, the mitochondrial pathways support photorespiration by generating serine from glycine. This pathway is essential under photosynthetic conditions and the enzyme expression varies with photosynthetic activity. In mammals, the expression of the mitochondrial enzymes varies in tissues and during development. In embryos, mitochondria supply formate and glycine for purine synthesis, a process essential for survival; in adult tissues, flux through mitochondria can favor serine production. The differences in the folate pathways of mitochondria depending on species, tissues and developmental stages, profoundly alter the nature of their metabolic contribution.  相似文献   

14.
15.
The regulation of several enzymes involved in one-carbon metabolism was studied in a mutant of Escherichia coli K-12 defective in S-adenosylmethionine synthetase. The mutant that was reported to have a low endogenous concentration of S-adenosylmethionine had elevated levels of N-5, 10-methylene tetrahydrofolate reductase and serine transhydroxymethylase, but the level of N-5, 10-methylene tetrahydrofolate dehydrogenase was not altered. These results suggest that S-adenosylmethionine plays a role in the regulation of one-carbon production and utilization. An enzyme system that cleaved glycine to one-carbon units was demonstrated. The enzymes responsible for the cleavage of glycine were induced by exogenous glycine but were independent of S-adenosylmethionine or purine levels in the cell.  相似文献   

16.
Excessive concentrations of L-methionine inhibited the folate-dependent de novo synthesis of thymidylic acid (TMP) in Raji cells, demonstrating the usefulness of this cell line for the study of methionine-folate antagonism. The effect was also produced by L-homocystine but not by other amino acids including D-methionine and L-ethionine, suggesting that this effect is exerted by a common intermediate of methionine and homocystine metabolism. L-Methionine, L-homocysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) are not inhibitors of thymidylate synthase activity. On the other hand the capacity of the cells to incorporate serine 3-carbon and glycine 2-carbon into DNA is impaired by the presence of L-methionine or L-homocystine. Studies with cell-free extracts demonstrated that the glycine cleavage enzyme is inhibited by 45% by L-methionine, L-homocysteine, SAM or SAH. Serine hydroxymethylase on the other hand was slightly stimulated by these sulfur-containing compounds and this stimulation was shown to occur in the intact cell as well. These findings suggest that when levels of L-methionine metabolites are elevated, there is an increase in the use of glycine to maintain the intracellular concentration of serine, which is required for homocysteine detoxification by conversion to cystathionine. The reduction in TMP synthesis caused by excess L-methionine or L-homocystine may result from increased utilization of one-carbon units for serine synthesis.  相似文献   

17.
The method of NMR spectroscopy was used to investigate the role of voltage-dependent anion channels in the outer mitochondrial membrane in the mechanism of ethanol hepatotoxicity using the synthesis of serine and exchange of methyl groups in hepatocytes metabolizing 13C-labeled glycine. Here we present and describe a methodological approach developed for the independent monitoring of the synthesis of serine in two intracellular compartments: the cytoplasm and mitochondria of intact hepatocytes, and quantification of different serine isotopomers synthesized in hepatocytes from 13C-labeled glycine. The data obtained indicate that the treatment of cells with ethanol as well as cysteamine (specific inhibitor of mitochondrial synthesis of serine) suppressed the level of mitochondrial but not cytoplasmic serine isotopomers. It is concluded that the decrease in the production of mitochondrial serine isotopomers in hepatocytes exposed to ethanol can be caused not only by decreased permeability of the outer mitochondrial membrane due to the closure of voltage-dependent anion channels and suppression of the exchange of substrates of serine synthesis in mitochondria but also by the reduction of the cytoplasmic and/or mitochondrial pool of pyridine nucleotides (NADH) during the oxidation of ethanol. Our work reveals a new mechanism of action of ethanol (alcohol intoxication) in hepatocytes through the regulation of glycine metabolism and opens new possibilities in the treatment of alcohol poisoning.  相似文献   

18.
The insect cell line derived from Spodoptera frugiperda (Sf9) does not express the activities of the trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. The lack of synthetase activity was confirmed by the inability to incorporate radiolabeled formate into nucleotides. The cells express, instead, a Mg2+ and NAD-dependent bifunctional methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase with properties similar to the enzyme found in the mitochondria of transformed mammalian cells. In contrast, the enzyme in Sf9 cells is localized in the cytoplasm. Nutritional studies in defined medium with dialyzed serum demonstrated that the Sf9 cell does not required added purines or pyrimidines for growth. It is auxotrophic for cysteine and glycine; this latter requirement is probably due to the absence of mitochondrial serine hydroxymethyltransferase. Incorporation of labeled glycine and serine into DNA indicates that only serine is a source of one-carbon units. These results suggest that the mitochondria in Sf9 cells do not play a major role in folate-mediated metabolism.  相似文献   

19.
The method of NMR spectroscopy was used to investigate the role of voltage-dependent anion channels in the outer mitochondrial membrane in the mechanism of ethanol hepatotoxicity using the synthesis of serine and exchange of methyl groups in hepatocytes metabolizing 13C-labeled glycine. Here we present and describe a methodological approach developed for the independent monitoring of the synthesis of serine in two intracellular compartments: the cytoplasm and mitochondria of intact hepatocytes, and quantification of different serine isotopomers synthesized in hepatocytes from 13C-labeled glycine. The data obtained indicate that the treatment of cells with ethanol as well as cysteamine (specific inhibitor of mitochondrial synthesis of serine) suppressed the level of mitochondria but not cytoplasmic serine isotopomers. It is concluded that the decrease in the production of mitochondrial serine isotopomers in hepatocytes exposed to ethanol can be caused not only by decreased permeability of the outer mitochondrial membrane due to the closure of voltage-dependent anion channels and suppression of the exchange of substrates of serine synthesis in mitochondria but also by the restoration of the cytoplasmic and/or mitochondrial pool of pyridine nucleotides (NADH) during the oxidation of ethanol. Our work reveals a new mechanism of action of ethanol (alcohol intoxication) in hepatocytes through the regulation of glycine metabolism and opens new possibilities in the treatment of alcohol poisoning.  相似文献   

20.
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to glycine with the transfer of the one-carbon group to tetrahydrofolate to form 5,10-methylenetetrahydrofolate. No SHMT has been purified from a nonmethanogenic Archaea strain, in part because this group of organisms uses modified folates as the one-carbon acceptor. These modified folates are not readily available for use in assays for SHMT activity. This report describes the purification and characterization of SHMT from the thermophilic organism Sulfolobus solfataricus. The exchange of the alpha-proton of glycine with solvent protons in the absence of the modified folate was used as the activity assay. The purified protein catalyzes the synthesis of serine from glycine and a synthetic derivative of a fragment of the natural modified folate found in S. solfataricus. Replacement of the modified folate with tetrahydrofolate did not support serine synthesis. In addition, this SHMT also catalyzed the cleavage of both allo-threonine and beta-phenylserine in the absence of the modified folate. The cleavage of these two amino acids in the absence of tetrahydrofolate is a property of other characterized SHMTs. The enzyme contains covalently bound pyridoxal phosphate. Sequences of three peptides showed significant similarity with those of peptides of SHMTs from two methanogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号