首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
It is increasingly recognized that intra-uterine growth restriction (IUGR) is associated with an increased risk of metabolic disorders in late life. Previous studies showed that mice exposed to LPS in late gestation induced fetal IUGR. The present study investigated the effects of maternal LPS exposure during pregnancy on metabolic phenotypes in female adult offspring. Pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD)15 to GD17. After lactation, female pups were fed with standard-chow diets (SD) or high-fat diets (HFD). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were assessed 8 and 12 weeks after diet intervention. Hepatic triglyceride content was examined 12 weeks after diet intervention. As expected, maternal LPS exposure during pregnancy resulted in fetal IUGR. Although there was an increasing trend on fat mass in female offspring whose dams were exposed to LPS during pregnancy, maternal LPS exposure during pregnancy did not elevate the levels of fasting blood glucose and serum insulin and hepatic triglyceride content in female adult offspring. Moreover, maternal LPS exposure during pregnancy did not alter insulin sensitivity in adipose tissue and liver in female adult offspring. Further analysis showed that maternal LPS exposure during pregnancy did not exacerbate HFD-induced glucose tolerance and insulin resistance in female adult offspring. In addition, maternal LPS exposure during pregnancy did not aggravate HFD-induced elevation of hepatic triglyceride content in female adult offspring. In conclusion, LPS-induced IUGR does not alter metabolic phenotypes in adulthood.  相似文献   

2.
Although the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 mg/kg on Gestation Days 11-17, and reproductive development in male offspring was evaluated. Prenatal administration of EDS compromised fetal testosterone (T) levels, compared with controls. EDS-exposed pups recovered their steroidogenic capacities after birth because T production by hCG-stimulated testis parenchyma from prepubertal male offspring was unchanged. However, prepubertal testes from prenatally exposed males contained seminiferous tubules (STs) devoid of germ cells, indicating a delay in spermatogenesis. In adults, some STs in exposed males still contained incomplete germ cell associations corroborating observed reductions in epididymal sperm reserves, fertility ratios, and litter size. Morphometry revealed an EDS-induced increase in interstitial area and a concomitant decrease in ST area, but stereology revealed an unexpected decrease in the number and size of the LCs per testis in exposed males. Paradoxically, there was an increase in both serum LH and T production by adult testis parenchyma, indicating that the LCs were hyperstimulated. These data demonstrate permanent lesions in LC development and spermatogenesis caused by prenatal exposure in mice. Thus, although adult mouse LCs are insensitive to EDS, EDS appears to have direct action on fetal LCs, resulting in abnormal testis development.  相似文献   

3.
During early life, prolactin (PRL) ingested by the pups through the milk participates in the development of neuroendocrine, immunological and reproductive systems. The present study tested whether a deficiency in PRL in the dam's milk during early lactation affected the offspring in terms of the maternal responsiveness in the sensitization paradigm and behavioral response to a novel environment in the offspring. Thus, lactating rats were injected (sc) on postnatal days (PND) 2–5 with bromocriptine (125 μg/day), bromocriptine + ovine PRL (125 μg + 300 μg/day), or vehicle. As juveniles (at PND 24) or adults (PND 90–100), one female from each litter was exposed to 5 foster pups continuously for 8 days and their maternal responsiveness was recorded. Female offspring were also tested in an open field arena. Adult, but not juvenile, female offspring of bromocriptine-treated mothers showed an increased latency to become maternal, in comparison to latencies displayed by the offspring of control mothers. Furthermore, the proportion of adult, but not juvenile, offspring of bromocriptine-treated mothers that became maternal was lower than that showed by the offspring of vehicle-treated mothers. In comparison to female offspring of vehicle-treated mothers, female offspring of bromocriptine-treated mothers spent less time hovering over the pups (as juvenile females), body licking (as both juvenile and adult females), and in close proximity to pups (as adult females) during the maternal behavior test. Simultaneous administration of ovine PRL and bromocriptine reversed almost all the negative effects of bromocriptine. These data suggest that maternally-derived PRL participates during the early postnatal period in the development of neural systems that underlie the control of maternal behavior.  相似文献   

4.
Effects of maternal parachlorophenilalanine (PCPA) administration on the offspring behavior were studied in the open field, Porsolt forced swimming, and Morris water maze tests. PCPA was administered in two different gestational periods: on gestational days (GD) 8-11 or GD 14-17, at doses 200/100/100/50 mg/kg. It was found that prenatal exposure to PCPA results in fetal serotonin (5-HT) depletion and changes in both open field activity and depression-related behavior, as well as impairments in spatial learning in the adult offspring. The most pronounced effects on behavior were observed in the male and female offspring whose mothers were depleted of serotonin by PCPA during the third trimester of pregnancy. These results provide further evidence that adverse factors have the most severe effects on the development of rat brain function when exposed during the final trimester of pregnancy than during the second trimester.  相似文献   

5.
Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.  相似文献   

6.
The effects of maternal 50% food restriction (FR) during the last week of gestation and/or lactation on pituitary-gonadal axis (at birth and weaning), on circulating levels of leptin (at weaning), and on the onset of puberty have been determined in rats at birth and at weaning. Maternal FR during pregnancy has no effect at term on the litter size, on the basal level of testosterone in male pups, and on the drastic surge of circulating testosterone that occurs 2 h after birth. At weaning, similar retardation of body growth is observed in male and female pups from mothers exposed to FR. This undernutrition induces the most drastic effects when it is performed during both gestation and lactation or during lactation alone. Drastic retardation of testicle growth with reduction of cross-sectional area and intratubular lumen of the seminiferous tubules is observed in male pups from mothers exposed to undernutrition during both gestation and lactation or during lactation alone. Maternal FR during the perinatal period reduces circulating levels of FSH in male pups without affecting LH and testosterone concentrations. Maternal FR does not affect circulating levels of LH, estradiol, and progesterone in female pups. Female pups from mothers exposed to FR during both gestation and lactation show a significant increase of plasma FSH as well as a drastic retardation of ovarian growth. The follicular population was also altered. The number of antral follicles of small size (vesicular follicles) was increased, although the number of antral follicles of large size (graafian follicles) was reduced. Maternal FR occurring during both late gestation and lactation (male and female pups), during lactation alone (male and female pups), or during late gestation (female pups) induces a drastic reduction of plasma leptin and fat mass in pups at weaning. The onset of puberty is delayed in pups of both sexes from mothers exposed to FR during lactation and during both gestation and lactation. In conclusion, these data demonstrate that a perinatal growth retardation induced by maternal FR has long-term consequences on both size and histology of the genitals, on plasma gonadotropins and leptin levels, on fat stores at weaning, and on the onset of puberty.  相似文献   

7.
Early influences such as maternal stress affect the developmental outcome of the offspring. We created an animal model of postpartum depression/stress based on giving high levels of corticosterone (CORT) to the rat dam, which resulted in behavioral and neural changes in the offspring. This study investigated whether highly elevated levels of maternal CORT during pregnancy or the postpartum result in higher levels of CORT in the stomach milk, serum, and brain of offspring. Dams received daily injections of CORT (40 mg/kg) or oil (control) either during pregnancy (gestational days 10–20) or the postpartum (Days 2–21). Pups that were exposed to high gestational maternal CORT had higher CORT levels in serum, but not in stomach milk or brain, on postnatal day (PND) 1. However, on PND7, pups that were exposed to high postpartum maternal CORT had higher CORT levels in stomach milk and brain, but not in serum. Conversely on PND18, pups that were exposed to high postpartum maternal CORT had higher CORT levels in serum, but not in brain (prefrontal cortex, hypothalamus, or hippocampus). Moreover, 24 h after weaning, there were no significant differences in serum CORT levels between the groups. Thus, CORT given to the dam during pregnancy or the postpartum results in elevated levels of CORT in the offspring, but in an age‐ and tissue‐dependent manner. Developmental exposure to high CORT could reprogram the HPA axis and contribute to the behavioral and neural changes seen in adult offspring. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 714–725, 2010  相似文献   

8.
Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats.  相似文献   

9.
Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine‐disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti‐androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague‐Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30–45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity  相似文献   

10.

Background

Observational studies have generated conflicting evidence on the effects of moderate maternal alcohol consumption during pregnancy on offspring cognition mainly reflecting problems of confounding. Among mothers who drink during pregnancy fetal alcohol exposure is influenced not only by mother’s intake but also by genetic variants carried by both the mother and the fetus. Associations between children’s cognitive function and both maternal and child genotype at these loci can shed light on the effects of maternal alcohol consumption on offspring cognitive development.

Methods

We used a large population based study of women recruited during pregnancy to determine whether genetic variants in alcohol metabolising genes in this cohort of women and their children were related to the child’s cognitive score (measured by the Weschler Intelligence Scale) at age 8.

Findings

We found that four genetic variants in alcohol metabolising genes in 4167 children were strongly related to lower IQ at age 8, as was a risk allele score based on these 4 variants. This effect was only seen amongst the offspring of mothers who were moderate drinkers (1–6 units alcohol per week during pregnancy (per allele effect estimates were −1.80 (95% CI = −2.63 to −0.97) p = 0.00002, with no effect among children whose mothers abstained during pregnancy (0.16 (95%CI = −1.05 to 1.36) p = 0.80), p-value for interaction  = 0.009). A further genetic variant associated with alcohol metabolism in mothers was associated with their child’s IQ, but again only among mothers who drank during pregnancy.  相似文献   

11.
Fetal growth restriction (FGR) and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS) on gestational days (GD) 13.5–16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation.  相似文献   

12.
Increasing evidence demonstrates that maternal folic acid (FA) supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR) remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS) exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study was to investigate the effects of FA on LPS-induced preterm delivery, fetal death and IUGR in mice. Some pregnant mice were orally administered with FA (0.6, 3 or 15 mg/kg) 1 h before LPS injection. As expected, a high dose of LPS (300 μg/kg, i.p.) on gestational day 15 (GD15) caused 100% of dams to deliver before GD18 and 89.3% of fetuses dead. A low dose of LPS (75 μg/kg, i.p.) daily from GD15 to GD17 resulted in IUGR. Interestingly, pretreatment with FA prevented LPS-induced preterm delivery and fetal death. In addition, FA significantly attenuated LPS-induced IUGR. Further experiments showed that FA inhibited LPS-induced activation of nuclear factor kappa B (NF-κB) in mouse placentas. Moreover, FA suppressed LPS-induced NF-κB activation in human trophoblast cell line JEG-3. Correspondingly, FA significantly attenuated LPS-induced upregulation of cyclooxygenase (COX)-2 in mouse placentas. In addition, FA significantly reduced the levels of interleukin (IL)-6 and keratinocyte-derived cytokine (KC) in amniotic fluid of LPS-treated mice. Collectively, maternal FA supplementation during pregnancy protects against LPS-induced preterm delivery, fetal death and IUGR through its anti-inflammatory effects.  相似文献   

13.
OBJECTIVE: The purpose of this study was to examine whether gestational exposure to major environmental endocrine‐disrupting chemicals, nonylphenol (NP), would lead to nerve behavioral and learning and memory capacity alterations in the male offspring of rats, and reproductive development alterations in the male offspring of rats. METHODS: Dams were gavaged with NP at a dose level of 50 mg/kg/day, 100 mg/kg/day or 200 mg/kg/day daily from gestational day 9 to 15, and at a dose level of 40 mg/kg/day, 80 mg/kg/day or 200 mg/kg/day daily from gestational day 14 to 19 (transplacental exposures). RESULTS: Exposure to 200 mg/kg/day NP produced a significant decrease in learning and memory functions in offspring rats (P<0.05) in Morris water maze task, as demonstrated by the increased escape latency and number of error. In Step‐down Avoidance Test, offspring rats exposed to NP spent more reaction time (RT) and presented lower latency to first step‐down than the control offspring (P<0.01). In utero exposure to 80 and 200 mg/kg/day NP produced a significant decrease in the number of live pups per litter and ratio of anogenital distance to body length on PND 0 (P<0.05), and also testes and prostate weight, activities of ALP, plasma testosterone concentration, cauda epididymis sperm counts, daily sperm production et al. respectively on PND 90 (P<0.05). Histopathological examination of the brain biopsy illustrates that exposure to NP at high dose induces the presence of abnormal distribution of spermatozoa showed in lumina of the seminiferous tubules, and absence of spermatogenesis and spermiogenesis. CONCLUSION: Gestational exposure to nonylphenol might induce neurotoxic and reproductive toxic effects on F1 male rats. Birth Defects Res (Part B) 89:418–428, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
双酚A(bisphenol-A,BPA)对脑和行为发育的低剂量效应已引起广泛关注。本研究分别于妊娠最后2周和分娩后前2周母鼠灌胃BPA(0.4和4 mg/kg.d),然后以旷场、高架十字迷宫、明暗箱、镜子迷宫、强迫游泳和被动回避箱等模型,分别测试幼年期(生后21~28 d)子代小鼠的行为,探讨围生期不同阶段的BPA暴露对幼年仔鼠自发活动、探究、焦虑、抑郁和被动回避记忆等行为的影响。结果表明,围生期不同阶段的BPA暴露对这些行为的影响不同,主要表现为:妊娠期BPA暴露促进幼年仔鼠的活动性,减弱其焦虑状态,提高雄性仔鼠的探究能力,促进雌性仔鼠的被动回避记忆;哺乳期BPA暴露减少幼年仔鼠的活动性,但对其焦虑行为的影响相对较弱,不影响仔鼠的探究能力和被动回避记忆;而妊娠期和哺乳期BPA暴露均加剧幼年仔鼠的抑郁行为。以上结果提示,妊娠期和哺乳期BPA暴露均可影响幼年仔鼠的焦虑、抑郁、被动回避记忆等多种行为,而妊娠期可能是BPA影响的更敏感时期。  相似文献   

15.
The vital stress experienced by mothers both during and before their pregnancy produced motor disturbances in their offspring. By parameters of the EMG activity of the low extremities, more pronounced motor disturbances are revealed in the young 35-day old rat pups whose mothers were exposed to the acute psychogenic trauma during pregnancy. Asymmetry of the motor disturbances is the most prominent in the 45-day old rat pups born from the mothers exposed to the psychogenic trauma one month before pregnancy. In the process of ontogenetic development the revealed deviations are better compensated in the rat pups of the “neonatal stress” group than in the case of their mothers' preconception psychogenic trauma.  相似文献   

16.
Objective:To describe the effects of strength exercise practice during pregnancy on the offspring’s development parameters: growth and motor performance, hippocampal neuroplasticity, and stress levels.Methods:Pregnant Wistar rats were divided into two groups: sedentary and exercised rats. Exercised pregnant rats were subjected to a strength training protocol (vertical ladder climbing) throughout the gestational period. Male offspring’s body weight, length, and head size were evaluated during the neonatal period (postnatal days [P]2–P21), as well as motor milestones during P0–P8. At P8, a set of male pups were subjected to global hippocampal DNA methylation, hippocampal cell proliferation, and plasma corticosterone concentration.Results:Offspring from trained mothers presented a transient change in body morphometric evaluations, no differences in milestone assessments, enhancement of cell proliferation in the dentate gyrus of the hippocampus, and decreased global hippocampal DNA methylation compared with the offspring from sedentary mothers. Furthermore, strength training during pregnancy did not change the corticosterone concentration of exercised mothers and their offspring.Conclusions:These data indicate that strength training can protect offspring’s development and could impact positively on parameters linked to cognitive function. This study provides a greater understanding of the effects of strength exercise practiced during pregnancy on the offspring’s health.  相似文献   

17.
Maternal posttraumatic stress disorder (PTSD) following trauma exposure during pregnancy is associated with an increased risk of affective disorders in children. To investigate the mechanisms by which prenatal trauma and/or maternal PTSD affect brain development and behavior we established a mouse model of prenatal traumatic (PT) experience based on the application of an electric foot shock to C57Bl/6N female mice on the gestational day 12 during their pregnancy. The model is based on a previously validated animal model of PTSD. We found high anxiety levels and poor maternal care along with reduced serum prolactin and increased corticosterone levels in dams following maternal trauma (MT). PT‐pups were born smaller and stayed smaller throughout their life. We show increased time and frequency of ultrasonic calls in PT‐pups when separated from the mothers on the postnatal day (PND) 9. Cross‐fostering experiments reveal lower anxiety levels in PT pups raised by healthy mothers as compared to trauma‐naive pups raised by MT‐dams. Importantly, the combination of prenatal trauma and being raised by a traumatized mother leads to: (1) the highest corticosterone levels in pups, (2) longest USV‐call time and (3) highest anxiety levels in comparison to other experimental groups. Our data indicates a distinct change in maternal care following MT which is possibly associated with trauma‐induced decrease in prolactin levels. Furthermore, we show that maternal behavior is crucial for the development of the offspring anxiety and specific aspects in maternal care overwrite to a significant extend the effects of in utero and postnatal environment. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1254–1265, 2016  相似文献   

18.
Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.  相似文献   

19.
Tabalumab, a human IgG4 monoclonal antibody (mAb) with neutralizing activity against both soluble and membrane B‐cell activating factor (BAFF), has been under development for the treatment of autoimmune diseases. The purpose of this study was to determine the potential adverse effects of maternal tabalumab exposure on pregnancy, parturition, and lactation of the mothers and on the growth, viability, and development of the offspring through postnatal day (PND) 204. Tabalumab was administered by subcutaneous injection to presumed pregnant cynomolgus monkeys (16–19 per group) every 2 weeks from gestation day (GD) 20 to 22 until parturition at doses of 0, 0.3, or 30 mg/kg. Evaluations in mothers and infants included clinical signs, body weight, toxicokinetics, blood lymphocyte phenotyping, T‐cell‐dependent antibody response (infants only), antitherapeutic antibody (ATA), organ weights (infants only), and gross and microscopic histopathology. Infants were also examined for external and visceral morphologic and neurobehavioral development. There were no adverse tabalumab‐related effects on maternal or infant endpoints. An expected pharmacological decrease in peripheral blood B‐lymphocytes occurred in adults and infants; however, B‐cell recovery was evident by PND154 in adults and infants at 0.3 mg/kg and by PND204 in infants at 30 mg/kg. At 30 mg/kg, a reduced IgM antibody response to T‐cell‐dependent antigen keyhole limpet hemocyanin (KLH) was observed following primary immunization. Following secondary KLH immunization, all infants in both dose groups mounted anti‐KLH IgM and IgG antibody responses similar to control. Placental and mammary transfer of tabalumab was demonstrated. In conclusion, the no‐observed‐adverse‐effect level for maternal and developmental toxicity was 30 mg/kg, the highest dose tested. Exposures at 30 mg/kg provide a margin of safety of 16× the anticipated clinical exposure.  相似文献   

20.
An adverse intrauterine environment increases the risk of developing various adult-onset diseases, whose nature varies with the timing of exposure. Maternal undernutrition in humans can increase adiposity, and the risk of coronary heart disease and impaired glucose tolerance in adult life, which may be partly mediated by maternal or fetal endocrine stress responses. In sheep, dexamethasone in early pregnancy impairs cardiovascular function, but not glucose homeostasis in adult female offspring. However, male offspring are often more susceptible to early life "programming". Pregnant sheep were infused intravenously with saline (0.19 ml/h), dexamethasone (0.48 mg/h), or cortisol (5 mg/h), for 2 days from 26 to 28 days of gestation. In male offspring, size at birth and postnatal growth were measured, and glucose tolerance [intravenous glucose tolerance test (IVGTT)], insulin secretion, and insulin sensitivity of glucose, alpha-amino nitrogen, and free fatty acid metabolism were assessed at 4 yr of age. We show that cortisol, but not dexamethasone, treatment of mothers causes fasting hyperglycemia in adult male offspring. Maternal cortisol induced a second-phase hyperinsulinemia during IVGTT, whereas maternal dexamethasone induced a first-phase hyperinsulinemia. Dexamethasone improved glucose tolerance, while cortisol had no impact, and neither affected insulin sensitivity. This suggests that maternal glucocorticoid exposure in early pregnancy alters glucose homeostasis and induces hyperinsulinemia in adult male offspring, but in a glucocorticoid-specific manner. These consequences of glucocorticoid exposure in early pregnancy may lead to pancreatic exhaustion and diabetes longer term and are consistent with stress during early pregnancy contributing to such outcomes in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号