首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Jing Yan  Di Zhang  Huili Shi  Keke Huo 《FEBS letters》2010,584(15):3275-3278
The SCY1-like 1 binding protein 1 (SCYL1-BP1) protein was identified as an interacting partner of E3 ligase p53-induced RING H2 protein (Pirh2) and mouse double minute gene number 2 (MDM2) by yeast two-hybrid screening. Further investigation suggested there are two interactions involved in different mechanisms. SCYL1-BP1 can be ubiquitinated and degraded by Pirh2 but not by MDM2, which suggests that SCYL1-BP1 can be regulated by Pirh2. On the other hand, while SCYL1-BP1 binds to ubiquitin E3 ligase MDM2, it promotes MDM2 self-ubiquitination and results in a reduction of MDM2 protein level.

Structured summary

MINT-7904819, MINT-7904837, MINT-7904806, MINT-7904715: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with SCYL1-BP1 (uniprotkb:Q5T7V8) by anti tag coimmunoprecipitation (MI:0007)MINT-7904857, MINT-7904899: SCYL1-BP1 (uniprotkb:Q5T7V8) physically interacts (MI:0915) with MDM2 (uniprotkb:Q00987) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

2.
3.
前期研究结果发现,SCYL1-BP1具有细胞周期调控功能,同时具有肿瘤抑制因子的特性。目的:采用基因工程技术,构建SCYL1-BP1的大肠杆菌重组表达菌株,以获得足够量的高纯度目的蛋白,为后面进行一系列药理学检测及新药安全性测试奠定基础。方法:利用从人胎脑cDNA文库中克隆得到SCYL1-BP1基因克隆为模板,经PCR扩增,通过酶切位点克隆到新型原核表达载体pET-28b-SUMO上,转化大肠杆菌表达菌BL21(DE3)。经IPTG诱导表达,摸索优化表达条件,表达产物经Ni柱进行亲和层析纯化,后再进行SDS-PAGE和Western blot等分析鉴定。结果:成功构建了SCYL1-BP1的原核表达工程菌BL21(DE3)/pET-28b-SUMO-SCYL1BP1。SDS-PAGE和Western blot检验结果表明,诱导表达的融合蛋白His6-SUMO-SCYL1BP1的分子量约为65 kDa,主要以可溶的形式存在,且能被His标签抗体和SCYL1-BP1单克隆抗体特异性识别。结论:原核表达并纯化了人SCYL1-BP1融合蛋白,为其后续功能研究及性质实验奠定基础。  相似文献   

4.
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.  相似文献   

5.
The trim14 (pub, KIAA0129) gene encodes the TRIM14 protein which is a member of the tripartite motif (TRIM) family. Previously, we revealed high expression levels of trim14 in HIV- or SIV-associated lymphomas and demonstrated the influence of trim14 on mesodermal differentiation of mouse embryonic stem cells (mESC). In the present work, to elucidate the role of trim14 in normal and pathological processes in the cell, we used two different types of cells transfected with trim14: mESC and human HEK293. Using subtractive hybridization and real-time PCR, we found a number of genes which expression was elevated in trim14-transfected mESC: hsp90ab1, prr13, pu.1, tnfrsf13c (baff-r), tnfrsf13b (taci), hlx1, hbp1, junb, and pdgfrb. A further analysis of the trim14-transfected mESC at the initial stage of differentiation (embryoid bodies (EB) formation) showed essential changes in the expression of these upregulated genes. The transfection of trim14 into HEK293 also induced an enhanced expression of the several genes upregulated in trim14-transfected mESC (hsp90ab1, prr13, pu.1, tnfrsf13c (baff-r), tnfrsf13b (taci), and hlx1). Summarizing, we found similar genes that participated in trim14-directed processes both in mESC and in HEK293. These results demonstrate the presence of the similar mechanism of trim14 gene action in different types of mammalian cells.  相似文献   

6.
Stromal cell-derived factor-1 (SDF-1) and its unique receptor, CXCR4, regulate stem/progenitor cell migration and retention in the bone marrow and are required for hematopoiesis. Recent studies found that hERG1 K+ channels were important regulators of tumor cell migration. In this study, we investigated whether SDF-1 induced acute leukemic cell migration associated with hERG1 K+ channels. Our results showed that E-4031, a specific hERG1 K+ channels inhibitor, significantly blocked SDF-1-induced migration of leukemic cell lines, primary acute leukemic cells, leukemic stem cells and HEK293T cells transfected with herg-pEGFP. The migration of phenotypically recognizable subsets gave the indication that lymphoblastic leukemic cells were inhibited more than myeloid cells while in the presence of E-4031 which maybe associated with herg expression. SDF-1 increased hERG1 K+ current expressed in oocytes and HEK293T cells transfected with herg-pEGFP. There were no significant changes of CXCR4 expression on both HL-60 cells and primary leukemic cells regardless if untreated or treated with E-4031 for 24 h (P > 0.05). The hERG1 K+ current increased by SDF-1 might contribute to the mechanism of SDF-1-induced leukemic cell migration. The data suggested that hERG1 K+ channels functionally linked to cell migration induced by SDF-1.  相似文献   

7.
Abstract

Novel compound heterozygous mutations, G701D, a recessive mutation, and A858D, a mild dominant mutation, of human solute carrier family 4, anion exchanger, member 1 (SLC4A1) were identified in two pediatric patients with distal renal tubular acidosis (dRTA). To examine the interaction, trafficking, and cellular localization of the wild-type and two mutant kidney AE1 (kAE1) proteins, we expressed the proteins alone or together in human embryonic kidney (HEK) 293T and Madin-Darby canine kidney (MDCK) epithelial cells. In individual expressions, wild-type kAE1 was localized at the cell surface of HEK 293T and the basolateral membrane of MDCK cells. In contrast, kAE1 G701D was mainly retained intracellularly, while kAE1 A858D was observed intracellularly and at the cell surface. In co-expression experiments, wild-type kAE1 formed heterodimers with kAE1 G701D and kAE1 A858D, and promoted the cell surface expression of the mutant proteins. The co-expressed kAE1 G701D and A858D could also form heterodimers but showed predominant intracellular retention in HEK 293T and MDCK cells. Thus impaired trafficking of the kAE1 G701D and A858D mutants would lead to a profound decrease in functional kAE1 at the basolateral membrane of α-intercalated cells in the distal nephron of the patients with dRTA.  相似文献   

8.
9.
10.
11.
12.
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.  相似文献   

13.
14.
The aim of the present study was to investigate whether/how the recombinant human cardiac IKs could be regulated by epidermal growth factor receptor kinase in HEK 293 cells stably expressing hKCNQ1/hKCNE1 genes using the approaches of perforated patch clamp technique, immunoprecipitation and Western blot analysis. It was found that the broad spectrum isoflavone tyrosine kinase inhibitor genistein and the selective epidermal growth factor receptor kinase inhibitor tyrphostin AG556 suppressed the recombinant IKs, and their inhibition was countered by the protein tyrosine phosphatase inhibitor orthovanadate. The Src-family kinase inhibitor PP2 reduced the current, but the effect was not antagonized by orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hKCNQ1 protein was decreased by genistein or AG556, but not by PP2. These results provide the novel information that epidermal growth factor receptor kinase, but not Src-family kinases, regulates the recombinant cardiac IKs stably expressed in HEK 293 cells via phosphorylating KCNQ1 protein of the channel.  相似文献   

15.
谷氧还蛋白1(glutaredoxin1,Grx1)是细胞内一种重要的巯基 二硫键氧化还原酶,在细胞内氧化还原状态的调控及抵抗氧化应激损伤过程中发挥重要作用.为进一步探讨Grx1的抗氧化机制,本实验将重组质粒pcDNA3.1(+)-hGrx1瞬时转染HEK293T细胞,经RT-PCR和Western印迹验证,细胞转染后实现了Grx1的过表达;以不同浓度H2O2为损伤因素,建立细胞氧化应激模型,检测过表达Grx1后细胞存活率,丙二醛(MDA)含量,超氧化物歧化酶(SOD)活力和乳酸脱氢酶(LDH)漏出率的变化,观察过表达Grx1后细胞的抗氧化能力;用终浓度100 μmol/LH2O2作用于细胞,利用Western 印迹检测120 min内HEK293T细胞中p38MAPK磷酸化水平.实验结果表明,HEK293T细胞过表达Grx1后,缓解了细胞的氧化应激损伤;转染空载体组细胞p38MAPK磷酸化水平在H2O2刺激后5 min开始升高,15 min达到最高值,并可维持至120 min左右;而过表达Grx1组细胞p38MAPK磷酸化水平在H2O2刺激后各时间段没有明显改变,提示Grx1通过抑制H2O2诱导的p38MAPK信号通路激活发挥其抗氧化作用.  相似文献   

16.

Background

Dicer is a multidomain ribonuclease III enzyme involved in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs); depletion of Dicer was found to impair the migration of endothelial cells.

Methods

siRNA transfection, cell migration assay, real-time RT–PCR, chromatin immunoprecipitation, Western blotting, ELISA, caspase-3 activity assay, and annexin-V–FITC assay were utilized.

Results

Knockdown of Dicer impairs the migratory capacity of HEK293T cells and induces fibronectin-1. The upregulation of fibronectin-1 is dependent on Egr1. Fibronectin-1/Dicer double-knockdown cells showed a marked increase in apoptosis compared with fibronectin-1 single knockdown cells.

Conclusions

Decreased Dicer expression induces fibronectin-1 expression via an Egr1-dependent manner.

General significance

Our data suggest that upregulation of fibronectin-1 protects Dicer knockdown HEK293T cells against apoptosis.  相似文献   

17.
Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.  相似文献   

18.
The canonical Wnt signalling pathway is a critical pathway involved in the proliferation of cells. It has been well-established that it plays the central role during colorectal carcinogenesis and development. Yet the exact molecular mechanism of how the canonical Wnt pathway is fine-tuned remains elusive. We found that SLC35C1, a GDP-fucose transporter, negatively regulates the Wnt signalling pathway. We show here that SLC35C1 is reduced in all colon cancer by both immunohistochemistry images and TCGA data, whereas β-catenin is increased. Down-regulation of SLC35C1 is also detected by real-time PCR in stage 3 and stage 4 colorectal cancer tissues. Moreover, analysing the TCGA database with cBioPortal reveals the negative correlation of SLC35C1 mRNA level to the expression of β-catenin. Reduced SLC35C1 significantly promotes cell proliferation and colony formation of HEK293 cells. Meanwhile, in HEK293 cells silencing SLC35C1 activates canonical Wnt pathway, whereas overexpressing SLC35C1 inhibits it. Consistently, the reduction of SLC35C1 in HEK293 cells also elevated the mRNA level of Wnt target genes C-myc, Axin2 and Cyclin D1, as well as the secretion of Wnt3a. In conclusion, we identified SLC35C1 as a negative regulator of the Wnt signalling pathway in colon cancer. Decreased SLC35C1 may cause over-activation of Wnt signalling in colorectal cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号