首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase (ftf) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.  相似文献   

2.
3.
4.
The luxS gene of Lactobacillus reuteri 100-23C was amplified by PCR, cloned, and then sequenced. To define a physiological and ecological role for the luxS gene in L. reuteri 100-23C, a luxS mutant was constructed by insertional mutagenesis. The luxS mutant did not produce autoinducers AI-2 or AI-3. Complementation of the luxS mutation by a plasmid construct containing luxS restored AI-2 and AI-3 synthesis. In vitro experiments revealed that neither the growth rate, nor the cell yield, nor cell survival in the stationary phase were compromised in the luxS mutant relative to the wild type and complemented mutant. The ATP content of exponentially growing cells of the luxS mutant was, however, 65% of that of wild-type cells. Biofilms formed by the luxS mutant on plastic surfaces in a bioreactor were thicker than those formed by the wild type. Biofilm thickness was not restored to wild-type values by the addition of purified AI-2 to the culture medium. In vivo experiments, conducted with ex-Lactobacillus-free mice, showed that biofilms formed by the mutant strain on the epithelial surface of the forestomach were approximately twice as thick as those formed by the wild type. The ecological performance of the luxS mutant, when in competition with L. reuteri strain 100-93 in the mouse cecum, was reduced compared to that of a xylA mutant of 100-23C. These results demonstrate that LuxS influences important ecological attributes of L. reuteri 100-23C, the consequences of which are niche specific.  相似文献   

5.
Genetic tests of the roles of the embryonic ureases of soybean   总被引:8,自引:5,他引:3       下载免费PDF全文
We assayed the in vivo activity of the ureases of soybean (Glycine max) embryos by genetically eliminating the abundant embryo-specific urease, the ubiquitous urease, or a background urease. Mutant embryos accumulated urea (250-fold over progenitor) only when lacking all three ureases and only when developed on plants lacking the ubiquitous urease. Thus, embryo urea is generated in maternal tissue where its accumulation is not mitigated by the background urease. However, the background urease can hydrolyze virtually all urea delivered to the developing embryo. Radicles of 2-day-old germinants accumulated urea in the presence or absence of the embryo-specific urease (2 micromoles per gram dry weight radicle). However, mutants lacking the ubiquitous urease exhibited increased accumulation of urea (to 4-5 micromoles urea per gram dry weight radicle). Thus, the ubiquitous and not the embryo-specific urease hydrolyzes urea generated during germination. In the absence of both of these ureases, the background urease activity (4% of ubiquitous urease) may hydrolyze most of the urea generated. A pleiotropic mutant lacking all urease accumulated 34 micromoles urea per gram dry weight radicle (increasing 2.5-fold at 3 days after germination). Urea (20 millimolar) was toxic to in vitro-cultured cotyledons which contained active embryo-specific urease. Cotyledons lacking the embryo-specific urease accumulated more protein when grown with urea than with no nitrogen source. Among cotyledons lacking the embryo-specific urease, fresh weight increases were virtually unchanged whether grown on urea or on no nitrogen and whether in the presence or absence of the ubiquitous urease. However, elimination of the ubiquitous urease reduced protein deposition on urea-N, and elimination of both the ubiquitous and background ureases further reduced urea-derived protein. The evidence is consistent with the lack of a role in urea hydrolysis for the embryo-specific urease in developing embryos or germinating seeds. Because the embryo-specific urease is deleterious to cotyledons cultured in vitro on urea-N, its role may be to hydrolyze urea in wounded or infected embryos, creating a hostile environment for pest or pathogen. While the ubiquitous urease is operative in leaves and in seedlings, all or most of its function can be assumed by the background urease in embryos and in seedlings.  相似文献   

6.
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.  相似文献   

7.
The purpose of the present study was to examine the activity of the human Lactobacillus acidophilus strain LB, which secretes an antibacterial substance(s) against Helicobacter pylori in vitro and in vivo. The spent culture supernatant (SCS) of the strain LB (LB-SCS) dramatically decreased the viability of H. pylori in vitro independent of pH and lactic acid levels. Adhesion of H. pylori to the cultured human mucosecreting HT29-MTX cells decreased in parallel with the viability of H. pylori. In conventional mice, oral treatment with the LB-SCS protected against infection with Helicobacter felis. Indeed, at both 8 and 49 days post-LB-SCS treatment (29 and 70 days postinfection), inhibition of stomach colonization by H. felis was observed, and no evidence of gastric histopathological lesions was found. LB-SCS treatment inhibits the H. pylori urease activity in vitro and in H. pylori that remained associated with the cultured human mucosecreting HT29-MTX cells. Moreover, a decrease in urease activity was detected in the stomach of the mice infected with H. felis and treated with LB-SCS.  相似文献   

8.
Lactobacilli represent components of the commensal mammalian gastrointestinal microbiota and are useful as probiotics, functional foods, and dairy products. This study includes systematic polyphasic analyses of murine intestinal Lactobacillus isolates and correlation of taxonomic findings with data from cytokine production assays. Lactobacilli were recovered from mice with microbiota-dependent colitis (interleukin-10 [IL-10]-deficient C57BL/6 mice) and from mice without colitis (Swiss Webster and inducible nitric oxide synthetase-deficient C57BL/6 mice). Polyphasic analyses were performed to elucidate taxonomic relationships among 88 reference and murine gastrointestinal lactobacilli. Genotypic tests included single-locus analyses (16S ribosomal DNA sequencing and 16S-23S rRNA intergenic spacer region PCR) and genomic DNA profiling (repetitive DNA element-based PCR), and phenotypic analyses encompassed more than 50 tests for carbohydrate utilization, enzyme production, and antimicrobial resistance. From 20 mice without colitis, six Lactobacillus species were recovered; the majority of the mice were colonized with L. reuteri or L. murinus (72% of isolates). In contrast, only, L. johnsonii was isolated from 14 IL-10-deficient mice. Using an in vitro assay, we screened murine isolates for their ability to inhibit tumor necrosis factor alpha (TNF-α) secretion by lipopolysaccharide-activated macrophages. Interestingly, a subpopulation of lactobacilli recovered from mice without colitis displayed TNF-α inhibitory properties, whereas none of the L. johnsonii isolates from IL-10-deficient mice exhibited this effect. We propose that differences among intestinal Lactobacillus populations in mammals, combined with host genetic susceptibilities, may account partly for variations in host mucosal responses.  相似文献   

9.
10.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

11.
We describe a technique whereby intracellular urease activity can be localized by transmission electron microscopy. The ammonia produced from the enzymatic hydrolysis of urea is first precipitated with sodium tetraphenylboron and then replaced with silver to produce electron-dense silver tetraphenylboron. This direct reaction product deposition procedure was used to demonstrate the presence of membrane-bound urease of Staphylococcus sp. H3-22, a gram-positive ruminal bacterium.  相似文献   

12.
Urethane, a carcinogenic and teratogenic compound, in fermented foods and alcoholic beverages can be eliminated either by direct hydrolysis with urethanase, or by hydrolysis of its precursor molecule urea with acid urease. In the present study, a potent bacterium, which concomitantly produced urethanase and acid urease, was isolated from the decomposed Sargassum species. This bacterial isolate was identified as Chryseobacterium sp. Alg-SU10 by the 16S rRNA gene sequencing approach. The biocatalytic efficacy of the calcium alginate immobilized cells of this bacterium for the hydrolysis of urethane and urea was evaluated by characterizing urethanase and acid urease. The immobilized biocatalyst displayed maximal urethanase and urease activities at pH 5, and retained more than 96% of enzymatic activity at 15% (v/v) ethanol. The values of activation energy, enthalpy and entropy of catalysis were calculated as 43.3?kJ/mol, 40.8?kJ/mol and –116?J/mol/K, respectively, for urethanase and 38.1?kJ/mol, 35.6?kJ/mol and –77.8?J/mol/K, respectively, for acid urease. The overall results indicate the biocatalytic potential of immobilized cells of Chryseobacterium sp. Alg-SU10 for efficient abatement of urethane. This is the first report describing the thermodynamic characteristics of urethanase and acid urease co-produced by Chryseobacterium sp.  相似文献   

13.
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.  相似文献   

14.
Urea in alcoholic beverages is a precursor of ethyl carbamate (EC), which is carcinogenic. At present, removal of urea by acid urease is considered to be the most effective method. In this study, a strain with higher acid urease production was screened and the enzyme activity was 1.12 U/mL. The strain was identified as Staphylococcus cohnii via a phylogenetic analysis of its 16S rDNA gene sequence, its morphological characteristics, and its physiological and biochemical properties, named as Staphylococcus cohnii HFUTY-08. Optimum culture conditions were determined through a single-factor test and an orthogonal test, with results as follows: glucose concentration 30 g/L, peptone concentration 15 g/L, initial pH 5, and an optimal inoculation amounts of 5%. Under these conditions, the activity of acid urease produced by strain Staphylococcus cohnii HFUTY-08 was 1.78 U/ml. Besides, the crude enzyme was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The molecular weight of the enzyme was estimated to be 295 kDa and the structural features of the enzyme were defined as (αβγ)3. Finally, the preliminary study on the removal of urea by acid urease in Chinese rice wine (CRW) showed that the enzyme could remove about 75% urea within 72 h at 37 °C, which effectively prevented EC production.  相似文献   

15.
Urea in alcoholic beverage is a precursor of ethyl carbamate (EC), which is carcinogenic. Enzymatic elimination of urea has attracted much research interest. Acid urease with good tolerance toward ethanol and acid is ideal enzyme for such applications. In the present work, the structural genes of urease from Providencia rettgeri JN-B815, ureABC were efficiently expressed in E. coli BL21(DE3) in an active form (apourease) exhibiting both urease and urethanase (hydrolyze EC) activities. The specific activities of the purified apourease were comparatively low, which were 2.1 U/mg for urease and 0.6 U/mg for urethanase, respectively. However, apourease exhibited good resistance toward ethanol and acidic conditions. The relative activities of urease and urethanase remained over 80% in the buffers within pH 4–7. And the recoveries of both urease and urethanase activities were more than 50% in 5–25% ethanol solution. Apourease was utilized to eliminate urea in wine, and the residual urea in model wine was less than 50% after treatment with apourease for 30 h. Then 3D structure of UreC was predicted, and it was docked with urea and EC, respectively. The docking result revealed that three hydrogen bonds were formed between urea and amino acid residues in the active site of urease, whereas only one hydrogen bond can be formed between EC and the active center. Moreover, EC exhibited greater steric hindrance than urea when combined with the active site. Due to the low specific activities of apourease, both structural genes and accessory genes of urease were co-expressed in E. coli BL21(DE3). The holoenzyme was expressed as inclusion body. After renaturation and purification, the specific activities of urease and urethanase reached 10.7 and 3.8 U/mg, which were 5.62-fold and 6.33-fold of those of apourease, respectively. Therefore, accessory subunits of urease play an important role in enhancing urease and urethanase activities.  相似文献   

16.
Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohn's disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies.  相似文献   

17.
Lactobacillus is normally present in animals and humans colonizing several epithelia, mainly those belonging to the upper gastrointestinal tract. Most of the information about the distribution of Lactobacillus in mice has been obtained by bacterial culture and characterization, and only few reports have described the direct presence of these bacteria in tissues, especially in the gastric mucosa. In this study, we have characterized and evaluated the location and detailed relationship between Lactobacillus and epithelia using a combination of histological, molecular, immunocytochemical and ultrastructural methods. Normal Balb/c mice were sacrificed to study esophagus and stomach. Partial 16S rRNA gene sequencing, Gram, and P.A. Schiff staining allowed us to demonstrate that Lactobacillus murinus isolated from each animal colonize not only the epithelium of the forestomach but also that belonging to the distal esophagus. The pattern of colonization was linear over the keratinized epithelium, and also in a vertical way of focal bacterial aggregates. This was confirmed by transmission electron microscopy, and the nature of bacteria was further assessed by immunocytochemistry. Our results indicate that L. murinus can colonize the stomach and the esophagus epithelia in a biofilm-like manner, possibly acting as a defense barrier against colonization by other bacteria.  相似文献   

18.
Arginase of the Helicobacter pylori urea cycle hydrolyzes L-arginine to L-ornithine and urea. H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved in H. pylori nitrogen metabolism. The roles of arginase in the physiology of H. pylori were investigated in vitro and in vivo, since arginase in H. pylori is metabolically upstream of urease and urease is known to be required for colonization of animal models by the bacterium. The H. pylori gene hp1399, which is orthologous to the Bacillus subtilis rocF gene encoding arginase, was cloned, and isogenic allelic exchange mutants of three H. pylori strains were made by using two different constructs: 236-2 and rocF::aphA3. In contrast to wild-type (WT) strains, all rocF mutants were devoid of arginase activity and had diminished serine dehydratase activity, an enzyme activity which generates ammonium. Compared with WT strain 26695 of H. pylori, the rocF::aphA3 mutant was approximately 1, 000-fold more sensitive to acid exposure. The acid sensitivity of the rocF::aphA3 mutant was not reversed by the addition of L-arginine, in contrast to the WT, and yielded a approximately 10, 000-fold difference in viability. Urease activity was similar in both strains and both survived acid exposure equally well when exogenous urea was added, indicating that rocF is not required for urease activity in vitro. Finally, H. pylori mouse-adapted strain SS1 and the 236-2 rocF isogenic mutant colonized mice equally well: 8 of 9 versus 9 of 11 mice, respectively. However, the rocF::aphA3 mutant of strain SS1 had moderately reduced colonization (4 of 10 mice). The geometric mean levels of H. pylori recovered from these mice (in log(10) CFU) were 6.1, 5.5, and 4.1, respectively. Thus, H. pylori rocF is required for arginase activity and is crucial for acid protection in vitro but is not essential for in vivo colonization of mice or for urease activity.  相似文献   

19.
The microbiota inhabiting the mammalian gut is a functional organ that provides a number of services for the host. One factor that may regulate the composition and function of gut microbial communities is dietary toxins. Oxalate is a toxic plant secondary compound (PSC) produced in all major taxa of vascular plants and is consumed by a variety of animals. The mammalian herbivore Neotoma albigula is capable of consuming and degrading large quantities of dietary oxalate. We isolated and characterized oxalate-degrading bacteria from the gut contents of wild-caught animals and used high-throughput sequencing to determine the distribution of potential oxalate-degrading taxa along the gastrointestinal tract. Isolates spanned three genera: Lactobacillus, Clostridium, and Enterococcus. Over half of the isolates exhibited significant oxalate degradation in vitro, and all Lactobacillus isolates contained the oxc gene, one of the genes responsible for oxalate degradation. Although diverse potential oxalate-degrading genera were distributed throughout the gastrointestinal tract, they were most concentrated in the foregut, where dietary oxalate first enters the gastrointestinal tract. We hypothesize that unique environmental conditions present in each gut region provide diverse niches that select for particular functional taxa and communities.  相似文献   

20.
Yamaya T  Filner P 《Plant physiology》1981,67(6):1133-1140
Urease activity of tobacco XD cells (1U cells) had undergone a 4-fold increase (4U cells) during a year of growth on urea (Skokut and Filner 1980 Plant Phvsiol 65: 995-1003). A clone of 4U cells gave rise to 12U cells during another year of growth on urea. The doubling time of 12U cells on urea is 2.2 days, compared to about 4 days for 1U cells, while 1U and 12U cells double in 2 days on nitrate. Acetohydroxamic acid (AHA), a specific inhibitor/reversible inactivator of jack bean urease, affects tobacco cell urease similarly. Fifty per cent inhibition of growth by AHA occurred at 20 micromolar in 1U cells growing on urea and at 165 micromolar in 12U cells growing on urea, but at 600 micromolar for either 1U or 12U cells growing on nitrate. When 12U cells were grown on urea with 100 micromolar AHA, extractable urease activity decreased 80% within 2.5 hours and remained at this level for 2 weeks; the doubling time increased to 3.7 days, and intracellular urea rose 2-fold, compared to 12U cells grown on urea without AHA. Urease of 12U cells inactivated by AHA in vivo could be reactivated to its pre-AHA level by incubation at 30 C after extraction and separation from free AHA. AHA inhibited incorporation of 15N from [15N]urea into Kjeldahl nitrogen in the cells, in spite of the increased intracellular urea. These results indicate that AHA acts primarily by inhibiting urease action, rather than by inhibition of formation of urease protein or of uptake of urea. Because 12U cells are 8 times more tolerant of AHA than 1U cells, it is likely that growth on urea in the presence of AHA should select strongly for cells with high urease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号