首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this perspective, the potential application of stem cells for the treatment of COVID-19 related pneumonia and their potential mechanism of action have been overviewed.  相似文献   

2.
Comparison of studies of cells derived from normal and pathological tissues of the same organ can be fraught with difficulties, particular with cancer where a number of different diseases are considered cancer within the same tissue. In the thyroid, there are 4 main types of cancer, three of which arise from follicular epithelial cells; papillary and follicular which are classified as differentiated, and anaplastic which is classified as undifferentiated.One assay that can be utilised for isolation of cancer stem cells is the side population (SP) assay. However, SP studies have been limited in part due to lack of optimal isolation strategies and in the case of anaplastic thyroid cancer (ATC) are further compounded by lack of access to ATC tumors. We have used thyroid cell lines to determine the optimal conditions to isolate viable SP cells. We then compared SP cells and NSP cells (bulk tumour cells without the SP) of a normal thyroid cell line N-thy ori-3-1 and an anaplastic thyroid cancer cell line SW1736 and showed that both SP cell populations displayed higher levels of stem cell characteristics than the NSP. When we compared SP cells of the N-thy ori-3-1 and the SW1736, the SW1736 SP had a higher colony forming potential, expressed higher levels of stem cell markers and CXCR4 and where more migratory and invasive, invasiveness increasing in response to CXCL12.This is the first report showing functional differences between ATC SP and normal thyroid SP and could lead to the identification of new therapeutic targets to treat ATC.  相似文献   

3.
Stem cells and cancer are inextricably linked; the process of carcinogenesis initially affects normal stem cells or their closely related progenitors and then, at some point, neoplastic stem cells are generated that propagate and ultimately maintain the process. Many, if not all, cancers contain a minority population of self-renewing stem cells, “cancer stem cells”, that are entirely responsible for sustaining the tumour and for giving rise to proliferating but progressively differentiating cells that contribute to the cellular heterogeneity typical of many solid tumours. Thus, the bulk of the tumour is often not the clinical problem, and so the identification of cancer stem cells and the factors that regulate their behaviour are likely to have an enormous bearing on the way that we treat neoplastic disease in the future. This review summarises (1) our knowledge of the origins of some cancers from normal stem cells and (2) the evidence for the existence of cancer stem cells; it also illustrates some of the stem cell renewal pathways that are frequently aberrant in cancer and that may represent druggable targets.  相似文献   

4.
5.
Cardiovascular diseases represent the world’s leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.  相似文献   

6.
Human pluripotent stem cells (hPSCs) are known to acquire genomic changes as they proliferate and differentiate. Despite concerns that these changes will compromise the safety of hPSC-derived cell therapy, there is currently scant evidence linking the known hPSC genomic abnormalities with malignancy. For the successful use of hPSCs for clinical applications, we will need to learn to distinguish between innocuous genomic aberrations and those that may cause tumors. To minimize any effects of acquired mutations on cell therapy, we strongly recommend that cells destined for transplant be monitored throughout their preparation using a high-resolution method such as SNP genotyping.  相似文献   

7.
白内障摘除联合人工晶状体植入术是目前治疗白内障的唯一有效措施。然而,人工晶状体作为替代材料,仍然存在一些如屈光调节力差以及术后眩光等未能克服的缺陷。寻找更理想的晶状体替代物及低等两栖类动物(如蝾螈)强大的晶状体再生能力,为晶状体再生的研究提供了原动力和依据。近年来,人们已探索出将胚胎干细胞/诱导的多能干细胞在体外诱导分化为类晶状体样结构的培养方法,为白内障的治疗开辟了新的思路。晶状体再生的研究为探索晶状体正常发育机制及晶状体疾病的发生和防治提供了新的平台。晶状体再生的成功也将为白内障的防治带来里程碑性的突破。本文拟总结晶状体正常发育过程及其调控机制,回顾国内外对晶状体体内再生能力的研究成果,并对目前人们探索利用胚胎干细胞和诱导的多能干细胞再造晶状体的研究进展作一概述,希望对干细胞与晶状体再生的后续相关研究提供一定的借鉴。  相似文献   

8.
The future clinical use of embryonic stem cell (ESC)-based hepatocyte replacement therapy depends on the development of an efficient procedure for differentiation of hepatocytes from ESCs. Here we report that a high density of human ESC-derived fibroblast-like cells (hESdFs) supported the efficient generation of hepatocyte-like cells with functional and mature hepatic phenotypes from primate ESCs and human induced pluripotent stem cells. Molecular and immunocytochemistry analyses revealed that hESdFs caused a rapid loss of pluripotency and induced a sequential endoderm-to-hepatocyte differentiation in the central area of ESC colonies. Knockdown experiments demonstrated that pluripotent stem cells were directed toward endodermal and hepatic lineages by FGF2 and activin A secreted from hESdFs. Furthermore, we found that the central region of ESC colonies was essential for the hepatic endoderm-specific differentiation, because its removal caused a complete disruption of endodermal differentiation. In conclusion, we describe a novel in vitro differentiation model and show that hESdF-secreted factors act in concert with regional features of ESC colonies to induce robust hepatic endoderm differentiation in primate pluripotent stem cells.  相似文献   

9.
Stem cells and cancer cells share certain characteristics, including the capacity to self-renew, differentiatie, and undergo epithelial-to-mesenchymal transition (EMT). The mechanisms underlying tumorigenesis retain similarities with processes in normal stem cell development. Comprehensive analysis and comparison of cancer cell and stem cell development will advance the study of cancer progression, enabling development of effective strategies for cancer treatment. In this review article, we first examine the convergence of outcome, cellular communication, and signaling pathways active in pluripotent stem cells and cancer cells. Next, we detail how stem cell engineering is able to mimic in vivo microenvironments. These efforts can help better identify stem cell-cancer cell interactions, elucidated dysregulated pluripotent signaling pathways occurring in cancer, revealed new factors that restrict tumorigenesis and metastasis potential, and reprogrammed cancer cells to a less aggressive phenotype. The potential of stem cell engineering to enhance cancer research is tremendous and may lead to alternative therapeutic options for aggressive cancers.  相似文献   

10.
11.
A novel two-step procedure to expand cardiac Sca-1+ cells clonally   总被引:1,自引:0,他引:1  
Resident cardiac stem cells (CSCs) are characterized by their capacity to self-renew in culture, and are multipotent for forming normal cell types in hearts. CSCs were originally isolated directly from enzymatically digested hearts using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface, and also compromise stem cell function. Alternatively resident CSCs can migrate from tissue explant and form cardiospheres in culture. However, fibroblast contamination can easily occur during CSC culture. To avoid these problems, we developed a two-step procedure by growing the cells before selecting the Sca-1+ cells and culturing in cardiac fibroblast conditioned medium, they avoid fibroblast overgrowth.  相似文献   

12.
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.  相似文献   

13.
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.  相似文献   

14.
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.  相似文献   

15.
The liver is one of the few organs that possess a high capacity to regenerate after liver failure or liver damage. The parenchymal cells of the liver, hepatocytes, contribute to the majority of the regeneration process. Thus, hepatocyte transplantation presents an alternative method to treating liver damage. However, shortage of hepatocytes and difficulties in maintaining primary hepatocytes still remain key obstacles that researchers must overcome before hepatocyte transplantation can be used in clinical practice. The unique properties of pluripotent stem cells (PSCs) and induced pluripotent stem cells (iPSCs) have provided an alternative approach to generating enough functional hepatocytes for cellular therapy. In this review, we will present a brief overview on the current state of hepatocyte differentiation from PSCs and iPSCs. Studies of liver regenerative processes using different cell sources (adult liver stem cells, hepatoblasts, hepatic progenitor cells, etc.) will be described in detail as well as how this knowledge can be applied towards optimizing culture conditions for the maintenance and differentiation of these cells towards hepatocytes. As the outlook of stem cell-derived therapy begins to look more plausible, researchers will need to address the challenges we must overcome in order to translate stem cell research to clinical applications.  相似文献   

16.
17.
Sharma S  Raju R  Sui S  Hu WS 《Biotechnology journal》2011,6(11):1317-1329
Advances in stem cell research and recent work on clinical trials employing stem cells have heightened the prospect of stem cell applications in regenerative medicine. The eventual clinical application of stem cells will require transforming cell production from laboratory practices to robust processes. Most stem cell applications will require extensive ex vivo handling of cells, from isolation, cultivation, and directed differentiation to product cell separation, cell derivation, and final formulation. Some applications require large quantities of cells in each defined batch for clinical use in multiple patients; others may be for autologous use and require only small-scale operations. All share a common requirement: the production must be robust and generate cell products of consistent quality. Unlike the established manufacturing process of recombinant protein biologics, stem cell applications will likely see greater variability in their cell source and more fluctuations in product quality. Nevertheless, in devising stem cell-based bioprocesses, much insight could be gained from the manufacturing of biological materials, including recombinant proteins and anti-viral vaccines. The key to process robustness is thus not only the control of traditional process chemical and physical variables, but also the sustenance of cells in the desired potency or differentiation state through controlling non-traditional variables, such as signaling pathway modulators.  相似文献   

18.
New stem cell based therapies are undergoing intense research and are widely investigated in clinical fields including the urinary system. The urinary bladder performs critical complex functions that rely on its highly coordinated anatomical composition and multiplex of regulatory mechanisms. Bladder pathologies resulting in severe dysfunction are common clinical encounter and often cause significant impairment of patient’s quality of life. Current surgical and medical interventions to correct urinary dysfunction or to replace an absent or defective bladder are sub-optimal and are associated with notable complications. As a result, stem cell based therapies for the urinary bladder are hoped to offer new venues that could make up for limitations of existing therapies. In this article, we review research efforts that describe the use of different types of stem cells in bladder reconstruction, urinary incontinence and retention disorders. In particular, stress urinary incontinence has been a popular target for stem cell based therapies in reported clinical trials. Furthermore, we discuss the relevance of the cancer stem cell hypothesis to the development of bladder cancer. A key subject that should not be overlooked is the safety and quality of stem cell based therapies introduced to human subjects either in a research or a clinical context.  相似文献   

19.
Intracerebral hemorrhage(ICH) is a very complex pathology, with many different not fully elucidated etiologies and prognostics. It is the most severe subtype of stroke, with high mortality and morbidity rates. Unfortunately, despite the numerous promising preclinical assays including neuroprotective, anti-hypertensive,and anti-inflammatory drugs, to this moment only symptomatic treatments are available, motivating the search for new alternatives. In this context, stem cell therapy emerged as a promising tool. However, more than a decade has passed, and there is still much to be learned not only about stem cells, but also about ICH itself, and how these two pieces come together. To date, rats have been the most widely used animal model in this research field, and there is much more to be learned from and about them. In this review, we first summarize ICH epidemiology, risk factors, and pathophysiology. We then present different methods utilized to induce ICH in rats, and examine how accurately they represent the human disease. Next, we discuss the different types of stem cells used in previous ICH studies, also taking into account the tested transplantation sites. Finally, we summarize what has been achieved in assays with stem cells in rat models of ICH, and point out some relevant issues where attention must be given in future efforts.  相似文献   

20.
Stem cells are considered to be among the principle scientific breakthroughs of the twentieth century for the future of medicine, and considered to be an important weapon to fight against diseases, particularly those that have resisted the efforts of science for a long time. Human dental tissues have limited potentials to regenerate but the discovery of dental stem cells have developed new and surprising scenario in regenerative dentistry. Stem cell treatments are one example of the possibility using adult cells sourced from patients’ own bodies’ means that it can be expected that in the near future such treatments may become routine at dental practices. The hope is that it will become possible to regenerate bone and dental tissues including the periodontal ligament, dental pulp and enamel, and that the creation of new teeth may also become feasible. In view of this possibility of achieving restoration with regenerative medicine, it can be considered that a new era of dentistry is beginning. Thus the aim of this review is to give dental professionals a brief overview of different stem cells sources and the latest findings and their implications for improving oral health and treating certain conditions of the human mouth and face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号