首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of molecular signaling in liver CSCs and present insights into new therapeutic strategies for targeting liver CSCs.  相似文献   

2.
Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic.  相似文献   

3.
Cancer stem cells (CSCs) are recognized as contributors to cancer progression and therapeutic resistance in liquid and solid malignancies. We analyzed a panel of human colon cancer cell lines for CSC populations by side population and aldehyde dehydrogenase activity. IGF-1 enriches these putative colon CSC populations in a β-catenin-dependent manner. Chemical inhibition of Akt depletes SP cells, and conversely, the overexpression of a constitutively active mutant version of Akt is sufficient to enrich CSC populations. CP-751,871, a fully human antibody with specificity to the IGF-1 receptor, is currently being tested in clinical trials for a variety of solid tumors. CP-751,871 reduces CSC populations in colon cancer cell lines in vitro and reduces tumor growth in vivo. We have identified a novel role for IGF-1 in the enrichment of chemo-resistant CSC populations. Our results suggest that CP-751,871 has preferential activity against putative CSC populations and, therefore, may complement current standard chemotherapeutic regimens that target cycling cells.  相似文献   

4.
5.
Cancer stem cells (CSCs) are recognized as contributors to cancer progression and therapeutic resistance in liquid and solid malignancies. We analyzed a panel of human colon cancer cell lines for CSC populations by side population and aldehyde dehydrogenase activity. IGF-1 enriches these putative colon CSC populations in a β-catenin-dependent manner. Chemical inhibition of Akt depletes SP cells, and conversely, the overexpression of a constitutively active mutant version of Akt is sufficient to enrich CSC populations. CP-751,871, a fully human antibody with specificity to the IGF-1 receptor, is currently being tested in clinical trials for a variety of solid tumors. CP-751,871 reduces CSC populations in colon cancer cell lines in vitro and reduces tumor growth in vivo. We have identified a novel role for IGF-1 in the enrichment of chemoresistant CSC populations. Our results suggest that CP-751,871 has preferential activity against putative CSC populations and, therefore, may complement current standard chemotherapeutic regimens that target cycling cells.Key words: IGF-1, cancer stem cell, colon cancer, figitumumab  相似文献   

6.
Primary malignant brain tumors are a major cause of morbidity and mortality in both adults and children, with a dismal prognosis despite multimodal therapeutic approaches. In the last years, a specific subpopulation of cells within the tumor bulk, named cancer stem cells(CSCs) or tumor-initiating cells, have been identified in brain tumors as responsible for cancer growth and disease progression. Stemness features of tumor cells strongly affect treatment response, leading to the escape from conventional therapeutic approaches and subsequently causing tumor relapse. Recent research efforts have focused at identifying new therapeutic strategies capable of specifically targeting CSCs in cancers by taking into consideration their complex nature. Aberrant epigenetic machinery plays a key role in the genesis and progression of brain tumors as well as inducing CSC reprogramming and preserving CSC characteristics. Thus, reverting the cancer epigenome can be considered a promising therapeutic strategy. Three main epigenetic mechanisms have been described: DNA methylation, histone modifications, and non-coding RNA, particularly micro RNAs. Each of these mechanisms has been proven to be targetable by chemical compounds, known as epigeneticbased drugs or epidrugs, that specifically target epigenetic marks. We review here recent advances in the study of epigenetic modulators promoting and sustaining brain tumor stem-like cells. We focus on their potential role in cancer therapy.  相似文献   

7.
Cancer stem cells and human malignant melanoma   总被引:1,自引:0,他引:1  
Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma.  相似文献   

8.
Rapid advances in the cancer stem cell (CSC) field have provided cause for optimism for the development of more reliable cancer therapies in the future. Strategies aimed at efficient targeting of CSCs are becoming important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. Here, we characterize and compare the specific markers that have been found to be present on stem cells, cancer cells and CSCs in selected tissues (colon, breast, liver, pancreas and prostate). We then discuss future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities.  相似文献   

9.
The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.  相似文献   

10.
Clusterin (CLU) has been implicated in various cell functions involved in carcinogenesis and tumour progression. There are two known CLU protein isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is proapoptotic, and a secretory form (sCLU) is prosurvival. CLU expression has been associated with tumorigenesis of various malignancies, including tumours of prostate, colon, and breast. Furthermore, CLU expression is modulated by many factors that are believed to regulate tumour growth and/or apoptosis, including 1,25-dihydroxyvitamin D3, transforming growth factor beta-1, ultraviolet radiation, and IR. sCLU upregulation appears to be a general molecular stress response. Presently, preliminary results indicate that therapeutic modalities targeting CLU may be effective in cancer treatment. However, such strategies should make sure that nCLU is not eliminated or reduced. This review summarizes our present understanding of the importance of CLU in various physiological functions including tumour growth, and discusses its relevance to future cancer therapy.  相似文献   

11.
Cancer stem cell marker glycosylation: Nature,function and significance   总被引:1,自引:0,他引:1  
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.  相似文献   

12.
Akunuru S  Palumbo J  Zhai QJ  Zheng Y 《PloS one》2011,6(2):e16951
The cancer stem cell (CSC) theory predicts that a small fraction of cancer cells possess unique self-renewal activity and mediate tumor initiation and propagation. However, the molecular mechanisms involved in CSC regulation remains unclear, impinging on effective targeting of CSCs in cancer therapy. Here we have investigated the hypothesis that Rac1, a Rho GTPase implicated in cancer cell proliferation and invasion, is critical for tumor initiation and metastasis of human non-small cell lung adenocarcinoma (NSCLA). Rac1 knockdown by shRNA suppressed the tumorigenic activities of human NSCLA cell lines and primary patient NSCLA specimens, including effects on invasion, proliferation, anchorage-independent growth, sphere formation and lung colonization. Isolated side population (SP) cells representing putative CSCs from human NSCLA cells contained elevated levels of Rac1-GTP, enhanced in vitro migration, invasion, increased in vivo tumor initiating and lung colonizing activities in xenografted mice. However, CSC activity was also detected within the non-SP population, suggesting the importance of therapeutic targeting of all cells within a tumor. Further, pharmacological or shRNA targeting of Rac1 inhibited the tumorigenic activities of both SP and non-SP NSCLA cells. These studies indicate that Rac1 represents a useful target in NSCLA, and its blockade may have therapeutic value in suppressing CSC proliferation and metastasis.  相似文献   

13.
14.
Eloquent studies from hematopoietic systems have provided proof that cancer arises from a tumor stem cell that possesses self-renewing properties. Until recently, it was believed that this tumor stem cell was unique to leukemic disorders; evidence now suggests that solid tumors also harbor cancer stem cells that are capable of initiating tumor growth in immunodeficient animals with as few as 10 cells. Consequently, the term "tumor-initiating cell" is now gaining favor within the field. Here, we conceptually discuss the current theories regarding tumor-initiating cells and their involvement in the development and progression of human malignancies. Special attention is given to laboratory techniques and strategies currently exploited to isolate tumor-initiating cells from larger populations, including their inherent strengths and weaknesses. The biological relevance of a tumor-initiating subpopulation is also pondered and arguments regarding their origin are presented. The therapeutic promise of targeting tumor-initiating cells is certainly eminent and we weigh the advantages of targeting this subpopulation. Lastly, the field of cancer stem cells appears to be well-placed to make significant strides over the next decade and we discuss potential obstacles that must be negotiated to achieve those objectives. The realization of these goals will undoubtedly further our understanding of this complex disease and should eventually lead to improved therapies in the not-so-distant future.  相似文献   

15.
16.
Cancer stem‐like cells represent a population of tumour‐initiating cells that lead to the relapse and metastasis of cancer. Conventional anti‐cancer therapeutic drugs are usually ineffective in eliminating the cancer stem‐like cells. Therefore, new drugs or therapeutic methods effectively targeting cancer stem‐like cells are in urgent need to successfully cure cancer. Gamboge is a natural anti‐cancer medicine whose pharmacological effects are different from those of conventional chemotherapeutical drugs and they can kill some kinds of cancer cells selectively. In this study, we identified a new gamboge derivative, Compound 2 (C2), which presents eminent suppression effects on cancer cells. Interestingly, when compared with cisplatin (CDDP), C2 effectively suppresses the growth of both cancer stem‐like cells and non‐cancer stem‐like cells derived from head and neck squamous cell carcinoma (HNSCC), inhibiting the formation of tumour spheres and colony in vitro, resulting in the loss of expression of multiple cancer stem cell (CSC)‐related molecules in HNSCC. Treating with C2 effectively inhibited the growth of HNSCC in BALB/C nude mice. Further investigation found that C2 notably inhibits the activation of epithelial growth factor receptor and the phosphorylation of its downstream protein kinase homo sapiens v‐akt murine thymoma viral oncogene homolog (AKT) in HNSCC, resulting in down‐regulation of multiple CSC‐related molecules in HNSCC. Our study has demonstrated that C2 effectively inhibits the stem‐like property of cancer stem‐like cells in HNSCC and may be a hopeful targeting drug in cancer therapy.  相似文献   

17.
Metastatic colorectal cancer remains a serious health concern with poor patient survival. Although 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) is the standard therapy for colorectal cancer, it has met with limited success. Recurrence of the tumor after chemotherapy could partly be explained by the enrichment of the chemo-resistant sub-population of cancer stem cells (CSCs) that possess the ability for self-renewal and differentiation into different lineages in the tumor. Therefore development of therapeutic strategies that target CSCs for successful treatment of this malignancy is warranted. The current investigation was undertaken to examine the effectiveness of the combination therapy of dasatinib (a Src inhibitor) and curcumin (a dietary agent with pleiotropic effect) in inhibiting the growth and other properties of carcinogenesis of chemo-resistant colon cancer cells that are enriched in CSCs sub-population. Remnants of spontaneous adenomas from APC Min +/- mice treated with dasatinib and/or curcumin were analyzed for several cancer stem cell markers (ALDH, CD44, CD133 and CD166). Human colon cancer cells HCT-116 (p53 wild type; K-ras mutant) and HT-29 (p53 mutant; K-ras wild type) were used to generate FOLFOX resistant (referred to as CR) cells. The effectiveness of the combination therapy in inhibiting growth, invasive potential and stemness was examined in colon cancer CR cells. The residual tumors from APC Min +/- mice treated with dasatinib and/or curcumin showed 80-90% decrease in the expression of the CSC markers ALDH, CD44, CD133, CD166. The colon cancer CR cells showed a higher expression of CSCs markers, cell invasion potential and ability to form colonospheres, compared to the corresponding parental cells. The combination therapy of dasatinib and curcumin demonstrated synergistic interactions in CR HCT-116 and CR HT-29 cells, as determined by Calcusyn analysis. The combinatorial therapy inhibited cellular growth, invasion and colonosphere formation and also reduced CSC population as evidenced by the decreased expression of CSC specific markers: CD133, CD44, CD166 and ALDH. Our data suggest that the combination therapy of dasatinib and curcumin may be a therapeutic strategy for re-emergence of chemo-resistant colon cancer by targeting CSC sub-population.  相似文献   

18.
Cancer stem cells (CSC) represent malignant cell subsets in hierarchically organized tumors, which are selectively capable of tumor initiation and self‐renewal and give rise to bulk populations of non‐tumorigenic cancer cell progeny through differentiation. Robust evidence for the existence of prospectively identifiable CSC among cancer bulk populations has been generated using marker‐specific genetic lineage tracking of molecularly defined cancer subpopulations in competitive tumor development models. Moreover, novel mechanisms and relationships have been discovered that link CSC to cancer therapeutic resistance and clinical tumor progression. Importantly, proof‐of‐principle for the potential therapeutic utility of the CSC concept has recently been provided by demonstrating that selective killing of CSC through a prospective molecular marker can inhibit tumor growth. Herein, we review these novel and translationally relevant research developments and discuss potential strategies for CSC‐targeted therapy in the context of resistance mechanisms and molecular pathways preferentially operative in CSC.  相似文献   

19.
Thyroid cancer (TC) is a common endocrine cancer with a rising incidence. Current treatment fails to eliminate aggressive thyroid tumours, prompting an investigation into the processes that cause disease progression. In this review, we provide insight into TGF-β driven epithelial to mesenchymal transition (EMT), summarizing the current literature surrounding thyroid carcinogenesis, and discuss the potential for therapeutic strategies targeting the TGF-β signalling pathway. Understanding the underlying mechanisms that regulate cancer stem cell (CSC) growth and TGF-β signalling may provide novel therapeutic approaches for highly resistant TCs.  相似文献   

20.
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the “yin-yang” model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号