首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac ischemia/reperfusion (I/R) injury induces brain pathology. Donepezil, a well-known acetylcholine esterase (AChE) inhibitor, has been proven to exert neuroprotective effects against several neurodegenerative diseases. However, the comprehensive mechanism regarding the therapeutic potential of donepezil on the brain under cardiac I/R injury remains obscure. Here, we hypothesized that treatment with donepezil ameliorates brain pathology following cardiac I/R injury by decreasing blood brain barrier (BBB) breakdown, oxidative stress, neuroinflammation, mitochondrial dysfunction, mitochondrial dynamics imbalance, microglial activation, amyloid-beta (Aβ) accumulation, neuronal apoptosis, and dendritic spine loss. Forty-eight adult male Wistar rats were subjected to surgery for cardiac I/R injury. Then, rats were randomly divided into four groups to receive either (1) saline (vehicle group), donepezil 3 mg/kg via intravenously administered (2) before ischemia (pretreatment group), (3) during ischemia (ischemia group), or (4) at the onset of reperfusion (reperfusion group). At the end of cardiac I/R paradigm, the brains were evaluated for BBB breakdown, brain inflammation, oxidative stress, mitochondrial function, mitochondrial dynamics, microglial morphology, Aβ production, neuronal apoptosis, and dendritic spine density. Administration of donepezil at all time points equally showed an attenuation of brain damage in response to cardiac I/R injury, as indicated by increased expression of BBB junction protein, reduced brain inflammation and oxidative stress, improved mitochondrial function and mitochondrial dynamics, and alleviated Aβ accumulation and microglial activation, resulting in protection of neuronal apoptosis and preservation of dendritic spine number. These findings suggest that donepezil potentially protects brain pathology caused by cardiac I/R injury regardless the timing of treatment.  相似文献   

2.
Trastuzumab has an impressive level of efficacy as regards antineoplasticity, however it can cause serious cardiotoxic side effects manifested by impaired cardiac contractile function. Although several pharmacological interventions, including melatonin and metformin, have been reported to protect against various cardiovascular diseases, their potential roles in trastuzumab-induced cardiotoxicity remain elusive. We hypothesized that either melatonin or metformin co-treatment effectively attenuates trastuzumab-mediated cardiotoxicity through attenuating the impaired mitochondrial function and mitochondrial dynamics. Male Wistar rats were divided into control (normal saline, n = 8) and trastuzumab group (4 mg/kg/day for 7 days, n = 24). Rats in the trastuzumab group were subdivided into 3 interventional groups (n = 8/group), and normal saline, or melatonin (10 mg/kg/day), or metformin (250 mg/kg/day) were orally administered for 7 consecutive days. Cardiac parameters were determined, and biochemical investigations were carried out on blood and heart tissues. Trastuzumab induced left ventricular (LV) dysfunction by increasing oxidative stress, inflammation, and apoptosis. It also impaired cardiac mitochondrial function, dynamics, and autophagy. Treatment with either melatonin or metformin equally attenuated trastuzumab-induced cardiac injury, indicated by a marked reduction in inflammation, oxidative damage, cardiac mitochondrial injury, mitochondrial dynamic imbalance, autophagy dysregulation, and apoptosis, leading to improved LV function, as demonstrated by increased LV ejection fraction. Melatonin and metformin conferred equal levels of cardioprotection against trastuzumab-induced cardiotoxicity, which may provide novel and promising approaches for management of cardiotoxicity induced by trastuzumab.  相似文献   

3.
Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24–26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4–6 months) mice hearts impair cardiomyocyte contractility and shows aging‐like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age‐related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.  相似文献   

4.
Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n = 6) or a high fat diet (HFD) (n = 12) for 12 weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n = 6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1 mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats.  相似文献   

5.
《BBA》2022,1863(6):148566
Altered DNA methylation and mitochondrial dysfunction are the two key features of myocardial ischemia reperfusion injury (I/R), but their association with I/R remains unknown. In the present study, the relationship between DNA methyl transferase1 (DNMT1), the key methylation gene, and the mitochondrial quality control genes in rat heart during I/R was explored. We used the Langendorff rat heart model with 30 min of ischemia followed by 60 min of reperfusion and subsequent inhibition of DNMT1 with 5-azacytidine to evaluate the role of DNA methylation in I/R. Reperfusion significantly increased the expression of the DNMT1 gene, enzyme activity, and global DNA methylation levels, along with decreased mitochondrial copy, electron transport chain (ETC) activities, and ATP level. This was in agreement with the significant downregulation of 11 mitochondrial genes PGC-1α, TFAM, POLG, MFN1 and MFN2, FIS1, PARKIN, OPTN, ND1, ND4L, Cyt B and COX1 in I/R induced rat hearts. The expression pattern of the mitochondrial genes PGC-1α, TFAM, ND1 and Cyt B showed a significant negative correlation with DNMT1 expression. Rate pressure product, index of cardiac performance negatively correlated with DNMT1 expression (r = -0.8231, p = 0.0456). However, DNMT1 inhibited rat hearts via 5-azacytidine significantly improved the heart from I/R injury and reversed the I/R associated changes in the gene expression of TFAM, POLG, PGC-1α, ND1, COX1 and Cyt B, and improved the overall mtDNA copies, with a subsequent improvement in the ETC enzyme activity and ATP levels. To conclude, I/R augmented the DNMT1 activity with a subsequent increase in cardiac injury via downregulating the mitochondrial functional genes.  相似文献   

6.
Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R‐operated rats were divided into 4 groups: vehicle, apoptosis (Z‐vad), ferroptosis (Fer‐1) and necroptosis (Nec‐1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z‐vad (low and medium doses) or Fer‐1 (medium and high doses). Fer‐1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec‐1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.  相似文献   

7.
AMP‐kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti‐hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω‐nitro‐L‐arginine methyl ester (L‐NAME, pan‐NOS inhibitor), splitomicin (SIRT1 inhibitor) or pifithrin‐α (p53 inhibitor). Results showed that treatment with metformin significantly attenuated AngII‐induced cell hypertrophy and death. Metformin attenuated AngII‐induced activation (cleavage) of caspase 3, Bcl‐2 down‐regulation and p53 up‐regulation. It also reduced AngII‐induced AT1R up‐regulation by 30% (P < 0.05) and enhanced AMPK phosphorylation by 99% (P < 0.01) and P‐eNOS levels by 3.3‐fold (P < 0.01). Likewise, losartan reduced AT1R up‐regulation and enhanced AMPK phosphorylation by 54% (P < 0.05). The AMPK inhibitor, compound C, prevented AT1R down‐regulation, indicating that metformin mediated its effects via AMPK activation. Beneficial effects of metformin and losartan converged on mitochondria that demonstrated high membrane potential (Δψm) and low permeability transition pore opening. Thus, this study demonstrates that the anti‐hypertrophic effects of metformin are associated with AMPK‐induced AT1R down‐regulation and prevention of mitochondrial dysfunction through the SIRT1/eNOS/p53 pathway.  相似文献   

8.
Previous studies have shown that stomatin-like protein-2 (SLP-2) could regulate mitochondrial biogenesis and function. The study was designed to explore the contribution of SLP-2 to the myocardial ischemia and reperfusion (I/R) injury. Anesthetized rats were treated with SLP-2 and subjected to ischemia for 30 minutes before 3 hours of reperfusion. An oxygen-glucose deprivation/reoxygenation model of I/R was established in H9C2 cells. In vivo, SLP-2 significantly improved cardiac function recovery of myocardial I/R injury rats by increasing fractional shortening and ejection fraction. SLP-2 pretreatment alleviated infarct area and myocardial apoptosis, which was paralleled by decreasing the level of cleaved caspase-3 and the ratio of Bax/Bcl-2, increasing the content of superoxide dismutase and reducing oxidative stress damage in serum. In addition, SLP-2 increased the level of ATP and stabilized mitochondrial potential (Ψm). The present in vitro study revealed that overexpression with SLP-2 reduced H9C2 cells apoptosis, accompanied by an increased level of ATP, the ratio of mitochondrial DNA/nuclear DNA, activities of complex II and V, and decreased the production of mitochondrial reactive oxygen species. Simultaneously, SLP-2 activated the adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathway in myocardial I/R injury rats and H9C2 cells. This study revealed that SLP-2 mediates the cardioprotective effect against I/R injury by regulating AMPK signaling pathway.  相似文献   

9.
During acute cardiac ischaemia/reperfusion (I/R), an increased plasma proprotein convertase subtilisin/kexin 9 (PCSK9) level instigates inflammatory and oxidative processes within ventricular myocytes, resulting in cardiac dysfunction. Therefore, PCSK9 inhibitor (PCSK9i) might exert cardioprotection against I/R injury. However, the effects of PCSK9i on the heart during I/R injury have not been investigated. The effects of PCSK9i given at different time‐points during I/R injury on left ventricular (LV) function were investigated. Male Wistar rats were subjected to cardiac I/R injury and divided into 3 treatment groups (n = 10/group): pre‐ischaemia, during ischaemia and upon onset of reperfusion. The treatment groups received PCSK9i (Pep2‐8, 10 μg/kg) intravenously. A control group (n = 10) received saline solution. During the I/R protocol, arrhythmia scores and LV function were determined. Then, the infarct size, mitochondrial function, mitochondrial dynamics and level of apoptosis were determined. PCSK9i given prior to ischaemia exerted cardioprotection through protection of cardiac mitochondrial function, decreased infarct size and improved LV function, compared with control. PCSK9i administered during ischaemia and upon the onset of reperfusion did not provide any of those benefits. PCSK9i administered before ischaemia exerts cardioprotection, as demonstrated by the attenuation of infarct size and cardiac arrhythmia during cardiac I/R injury. The attenuation is associated with improved mitochondrial function and connexin43 phosphorylation, leading to improved LV function.  相似文献   

10.
11.
The insulin‐PI3K‐mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin‐sensitivity via insulin‐PI3K‐mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre‐treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p‐Akt, p‐mTOR and p‐p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre‐treatment abolished the effects of increased p‐mTOR and p‐p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin‐PI3K‐mTOR dependent pathway.  相似文献   

12.
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca2+ uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca2+ uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca2+ uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.  相似文献   

13.
Evidence suggests Ginsenoside Rd (GSRd), a biologically active extract from the medical plant Panax Ginseng, exerts antioxidant effect, decreasing reactive oxygen species (ROS) formation. Current study determined the effect of GSRd on myocardial ischemia/reperfusion (MI/R) injury (a pathological condition where ROS production is significantly increased) and investigated the underlying mechanisms. The current study utilized an in vivo rat model of MI/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of simulated ischemia/reperfusion (SI/R) injury. Infarct size was measured by Evans blue/TTC double staining. NRC injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. ROS accumulation and apoptosis were assessed by flow cytometry. Mitochondrial membrane potential (MMP) was determined by 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetrathylbenzimidazol carbocyanine iodide (JC-1). Cytosolic translocation of mitochondrial cytochrome c and expression of caspase-9, caspase-3, Bcl-2 family proteins, and phosphorylated Akt and GSK-3β were determined by western blot. Pretreatment with GSRd (50 mg/kg) significantly augmented rat cardiac function, as evidenced by increased left ventricular ejection fraction (LVEF) and ±dP/dt. GSRd reduced myocardial infarct size, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels after MI/R. In NRCs, GSRd (10 µM) inhibited SI/R-induced ROS generation (P<0.01), decreased cellular apoptosis, stabilized the mitochondrial membrane potential (MMP), and attenuated cytosolic translocation of mitochondrial cytochrome c. GSRd inhibited activation of caspase-9 and caspase-3, increased the phosphorylated Akt and GSK-3β, and increased the Bcl-2/Bax ratio. Together, these data demonstrate GSRd mediated cardioprotective effect against MI/R–induced apoptosis via a mitochondrial-dependent apoptotic pathway.  相似文献   

14.
Sirtuin 3 (Sirt3) plays critical roles in regulating mitochondrial oxidative metabolism. However, whether Sirt3 is involved in liver ischemia and reperfusion (I/R) injury remains elusive. Caffeic acid (CA) is a natural antioxidant derived from Salvia miltiorrhiza. Whether CA protects against liver I/R injury through regulating Sirt3 and the mitochondrial respiratory chain (MRC) is unclear. This study investigated the effect of CA on liver I/R injury, microcirculatory disturbance, and potential mechanisms, particularly focusing on Sirt3-dependent MRC. Liver I/R of male Sprague-Dawley rats was established by occlusion of portal area vessels for 30 min followed by 120 min of reperfusion. CA (15 mg/kg/h) was continuously infused via the femoral vein starting 30 min before ischemia. After I/R, Sirt3 expression, and MRC activity decreased, acetylation of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 and succinate dehydrogenase complex, subunit A, flavoprotein variant provoked, and the liver microcirculatory disturbance and injury were observed. Treatment with CA attenuated liver injury, inhibited Sirt3 down-expression, and up-regulated MRC activity. CA attenuated rat liver microcirculatory disturbance and oxidative injury through regulation of Sirt3 and the mitochondrial respiratory chain.  相似文献   

15.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   

16.

Background

Heart failure due to diastolic dysfunction exacts a major economic, morbidity and mortality burden in the United States. Therapeutic agents to improve diastolic dysfunction are limited. It was recently found that Dynamin related protein 1 (Drp1) mediates mitochondrial fission during ischemia/reperfusion (I/R) injury, whereas inhibition of Drp1 decreases myocardial infarct size. We hypothesized that Dynasore, a small noncompetitive dynamin GTPase inhibitor, could have beneficial effects on cardiac physiology during I/R injury.

Methods and Results

In Langendorff perfused mouse hearts subjected to I/R (30 minutes of global ischemia followed by 1 hour of reperfusion), pretreatment with 1 µM Dynasore prevented I/R induced elevation of left ventricular end diastolic pressure (LVEDP), indicating a significant and specific lusitropic effect. Dynasore also decreased cardiac troponin I efflux during reperfusion and reduced infarct size. In cultured adult mouse cardiomyocytes subjected to oxidative stress, Dynasore increased cardiomyocyte survival and viability identified by trypan blue exclusion assay and reduced cellular Adenosine triphosphate(ATP) depletion. Moreover, in cultured cells, Dynasore pretreatment protected mitochondrial fragmentation induced by oxidative stress.

Conclusion

Dynasore protects cardiac lusitropy and limits cell damage through a mechanism that maintains mitochondrial morphology and intracellular ATP in stressed cells. Mitochondrial protection through an agent such as Dynasore can have clinical benefit by positively influencing the energetics of diastolic dysfunction.  相似文献   

17.
Acute myocardial infarction is regarded as myocardial necrosis resulting from myocardial ischemia/reperfusion (I/R) damage and retains a major cause of mortality. Neferine, which was extracted from the green embryos of mature seeds of Nelumbo nucifera Gaertn., has been reported to possess a broad range of biological activities. However, its underlying mechanism on the protective effect of I/R has not been fully clarified. A hypoxia/reoxygenation (H/R) model with H9c2 cells closely simulating myocardial I/R injury was used as a cellular model. This study intended to research the effects and mechanism underlying neferine on H9c2 cells in response to H/R stimulation. Cell Counting Kit-8 and lactate dehydrogenase (LDH) release assays were employed to measure cell viability and LDH, respectively. Apoptosis and reactive oxygen species (ROS) were determined by flow cytometry analysis. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and catalase. Mitochondrial function was assessed by mitochondrial membrane potential, ATP content, and mitochondrial ROS. Western blot analysis was performed to examine the expression of related proteins. The results showed that hypoxia/reoxygenation (H/R)-induced cell damage, all of which were distinctly reversed by neferine. Moreover, we observed that neferine inhibited oxidative stress and mitochondrial dysfunction induced by H/R in H9c2 that were concomitant with increased sirtuin-1 (SITR1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 expression. On the contrary, silencing the SIRT1 gene with its small interferingRNA eliminated the beneficial effects of neferine. It is concluded that neferine preconditioning attenuated H/R-induced cardiac damage via suppressing apoptosis, oxidative stress, and mitochondrial dysfunction, which may be partially ascribed to the activation of SIRT1/Nrf2 signaling pathway.  相似文献   

18.
Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H2O2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H2O2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process.  相似文献   

19.
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号