首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In the current study, we tested the in vivo effects of Yy1 gene dosage on the Peg3 imprinted domain with various breeding schemes utilizing two sets of mutant alleles. The results indicated that a half dosage of Yy1 coincides with the up-regulation of Peg3 and Zim1, suggesting a repressor role of Yy1 in this imprinted domain. This repressor role of Yy1 is consistent with the observations derived from previous in vitro studies. The current study also provided an unexpected observation that the maternal allele of Peg3 is also normally expressed, and thus the expression of Peg3 is bi-allelic in the specific areas of the brain, including the choroid plexus, the PVN (Paraventricular Nucleus) and the SON (Supraoptic Nucleus) of the hypothalamus. The exact roles of the maternal allele of Peg3 in these cell types are currently unknown, but this new finding confirms the previous prediction that the maternal allele may be functional in specific cell types based on the lethality associated with the homozygotes for several mutant alleles of the Peg3 locus. Overall, these results confirm the repressor role of Yy1 in the Peg3 domain and also provide a new insight regarding the bi-allelic expression of Peg3 in mouse brain.  相似文献   

3.
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.  相似文献   

4.
5.
6.
7.
Genome-wide epigenetic reprogramming is required for successful preimplantation development. Inappropriate or deficient chromatin regulation can result in defective lineage specification and loss of genomic imprinting, compromising normal development. Here we report that two members of the RNA polymerase II associated factor, homolog (Saccharomyces cerevisiae) complex (PAF1 complex) components, Ctr9 and Rtf1, are required during mammalian preimplantation development. We demonstrate that Ctr9-deficient embryos fail to correctly specify lineages at the blastocyst stage. Expression of some lineage specific factors is markedly reduced in Ctr9 knockdown embryos, including Eomes, Elf5 and Sox2, while others are inappropriately expressed (Oct4, Nanog, Gata6, Fgf4 and Sox17). We also show that several imprinted genes (Mest, Peg3, Snrpn and Meg3) are aberrantly expressed although allele specific DNA methylation is not altered. We document a loss of histone H3 lysine 36 trimethylation (H3K36me3) in Ctr9-deficient embryos and confirm that knockdown of either Setd2 or Rtf1 results in similar phenotypes. These findings show that the PAF1 complex is required for mammalian development, likely through regulation of H3K36me3, and indicate functional conservation of the PAF1 complex from yeast to mammals in vivo.  相似文献   

8.
Peg3 is an imprinted gene exclusively expressed from the paternal allele. It encodes a C2H2 type zinc-finger protein and is involved in maternal behavior. It is important for TNF-NFkB signaling and p53-mediated apoptosis. To investigate the imprinting mechanism and gene expression of Peg3 and its neighboring gene(s), we used a 120 kb Peg3-containing BAC clone to generate transgenic mice. The BAC clone contains 20 kb of 5 and 80 kb of 3 flanking DNA, and we obtained three transgenic lines. In one of the lines harboring one copy of the transgene, Peg3 was imprinted properly. In the other two lines, Peg3 was expressed upon both maternal and paternal transmission. Imprinted expression was linked to the differential methylation of a region (DMR) upstream of the Peg3 gene. A second, maternally expressed gene, Zim1, present on the transgene was expressed irrespective of parental inheritance in all lines. These data suggest that, similar to other imprinted genes within domains, Peg3 and Zim1 are regulated by one or more elements lying at a distance from the genes. The imprinting of Peg3 seen in one line may reflect the presence of a responder sequence. Concerning the expression of the Peg3 transgene, we detected appropriate expression in the adult brain. However, this was not sufficient to rescue the maternal behavior phenotype seen in Peg3 deficient animals.  相似文献   

9.
Paternally Expressed Gene 3 (Peg3) is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3’s roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3’s roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner.  相似文献   

10.
11.
12.
13.
14.
C57BL/6J (B6) mice are susceptible to high-fat diet (HFD)-induced obesity and have been used in metabolism research for many decades. However, the genetic component of HFD-induced obesity has not yet been elucidated. This study reports evidence for a paternal transmission of HFD-induced obesity and a correlated expression of Igf2 and Peg3 (paternal expressed gene 3) imprinted genes. We found that PWK mice are resistant to HFD-induced obesity compared to C57BL/6J mice. Therefore, we generated and analyzed reciprocal crosses between these mice, namely; (PWK×B6) F1 progeny with B6 father and (B6×PWK) F1 progeny with PWK father. The (PWK×B6) F1 mice were more sensitive to diet-induced obesity compared to (B6×PWK) F1 mice, suggesting a paternal transmission of diet-induced obesity. Expression analysis of imprinted genes in adipocytes revealed that HFD influences the expression of some of the imprinted genes in adipose tissue in B6 and PWK mice. Interestingly, Igf2 and Peg3, which are paternally expressed imprinted genes involved in the regulation of body fat accumulation, were down-regulated in B6 and (PWK×B6) F1 mice, which are susceptible to HFD-induced obesity, but not in PWK and (B6×PWK) F1 mice, which are resistant. Furthermore, in vitro analysis showed that Igf2, but not Peg3, had an anti-inflammatory effect on TNF-α induced MCP-1 expression in adipocytes. Taken together, our findings suggest that the down-regulation of Igf2 and Peg3 imprinted genes in adipocytes may be involved in the paternal transmission of HFD-induced obesity.  相似文献   

15.
Parental imprinting is a mammalian-specific form of epigenetic regulation in which one allele of a gene is silenced depending on its parental origin. Parentally imprinted genes have been shown to play a role in growth, metabolism, cancer, and behavior. Although the molecular mechanisms underlying parental imprinting have been largely elucidated, the selective advantage of silencing one allele remains unclear. The mutant phenotype of the imprinted gene, Pw1/Peg3, provides a key example to illustrate the hypothesis on a coadaptation between mother and offspring, in which Pw1/Peg3 is required for a set of essential maternal behaviors, such as nursing, nest building, and postnatal care. We have generated a novel Pw1/Peg3 mutant allele that targets the last exon for the PW1 protein that contains >90% of the coding sequence resulting in a loss of Pw1/Peg3 expression. In contrast to previous reports that have targeted upstream exons, we observe that maternal behavior and lactation are not disrupted upon loss of Pw1/Peg3. Both paternal and homozygous Pw1/Peg3 mutant females nurse and feed their pups properly and no differences are detected in either oxytocin neuron number or oxytocin plasma levels. In addition, suckling capacities are normal in mutant pups. Consistent with previous reports, we observe a reduction of postnatal growth. These results support a general role for Pw1/Peg3 in the regulation of body growth but not maternal care and lactation.  相似文献   

16.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

17.
18.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

19.
Paternal epigenome regulates placental and fetal growth. However, the effect of paternal obesity on placenta and its subsequent effect on the fetus via sperm remains unknown. We previously discovered abnormal methylation of imprinted genes involved in placental and fetal development in the spermatozoa of obese rats. In the present study, elaborate epigenetic characterization of sperm, placenta, and fetus was performed. For 16 weeks, male rats were fed either control or a high-fat diet. Following mating studies, sperm, placenta, and fetal tissue were collected. Significant changes were observed in placental weights, morphology, and cell populations. Methylation status of imprinted genes—Igf2, Peg3, Cdkn1c, and Gnas in spermatozoa, correlated with their expression in the placenta and fetus. Placental DNA methylating enzymes and 5-methylCytosine levels increased. Furthermore, in spermatozoa, DNA methylation of a few genes involved in pathways associated with placental endocrine function—gonadotropin-releasing hormone, prolactin, estrogen, and vascular endothelial growth factor, correlated with their expression in placenta and fetus. Changes in histone-modifying enzymes were also observed in the placenta. Histone marks H3K4me3, H3K9me3, and H4ac were downregulated, while H3K27me3 and H3ac were upregulated in placentas derived from obese male rats. This study shows that obesity-related changes in sperm methylome translate into abnormal expression in the F1-placenta fathered by the obese male, presumably affecting placental and fetal development.  相似文献   

20.
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号