首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Single nucleotide polymorphisms (SNPs) are valuable tools for ecological and evolutionary studies. In non-model species, the use of SNPs has been limited by the number of markers available. However, new technologies and decreasing technology costs have facilitated the discovery of a constantly increasing number of SNPs. With hundreds or thousands of SNPs potentially available, there is interest in comparing and developing methods for evaluating SNPs to create panels of high-throughput assays that are customized for performance, research questions, and resources. Here we use five different methods to rank 43 new SNPs and 71 previously published SNPs for sockeye salmon: FST, informativeness (In), average contribution to principal components (LC), and the locus-ranking programs BELS and WHICHLOCI. We then tested the performance of these different ranking methods by creating 48- and 96-SNP panels of the top-ranked loci for each method and used empirical and simulated data to obtain the probability of assigning individuals to the correct population using each panel. All 96-SNP panels performed similarly and better than the 48-SNP panels except for the 96-SNP BELS panel. Among the 48-SNP panels, panels created from FST, In, and LC ranks performed better than panels formed using the top-ranked loci from the programs BELS and WHICHLOCI. The application of ranking methods to optimize panel performance will become more important as more high-throughput assays become available.  相似文献   

4.
5.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
为了研究细胞周期相关基因8(CDCA8)的转录调控机制,首先克隆了人类CDCA8基因5’端上游的1071 bp转录调控区。生物信息学预测发现,此区域存在一系列已知转录因子的可能结合位点。联合运用DNA pull-down和转录因子芯片技术分析发现共有114种转录因子在人恶性多发性畸胎瘤细胞(NTERA-2)中与该区域结合, 其中某些转录因子有预测的结合位点,其他没有预测结合位点的转录因子可能是以复合物的形式结合到CDCA8基因的转录调控区。  相似文献   

14.
15.
16.
17.
18.
Med was found as a positive regulator for comK, a master regulator for late competence genes. It was found by Western analysis that the ComK level was decreased in a med mutant. Experiments using an alkaline phosphatase fusion with Med and Western analysis of Med were done because a putative lipo-modification signal is found at the N-terminus of Med. The results obtained are consistent with the localization of Med at the cell surface. An implication of the cell-surface localization of Med is discussed in terms of comK regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号