首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human studies demonstrate a four-fold increased possibility of smoking in the children of mothers who smoked during pregnancy. Nicotine is the active addictive component in tobacco-related products, crossing the placenta and contaminating the amniotic fluid. It is known that chemosensory experience in the womb can influence postnatal odor-guided preference behaviors for an exposure stimulus. By means of behavioral and neurophysiologic approaches, we examined whether fetal nicotine exposure, using mini-osmotic pumps, altered the response to nicotine odor in early postnatal (P17), adolescent (P35) and adult (P90) progeny. Compared with controls, fetal exposed rats displayed an altered innate response to nicotine odor that was evident at P17, declined in magnitude by P35 and was absent at P90 - these effects were specific to nicotine odor. The behavioral effect in P17 rats occurred in conjunction with a tuned olfactory mucosal response to nicotine odor along with an untoward consequence on the epithelial response to other stimuli – these P17 neural effects were absent in P35 and P90 animals. The absence of an altered neural effect at P35 suggests that central mechanisms, such as nicotine-induced modifications of the olfactory bulb, bring about the altered behavioral response to nicotine odor. Together, these findings provide insights into how fetal nicotine exposure influences the behavioral preference and responsiveness to the drug later in life. Moreover, they add to a growing literature demonstrating chemosensory mechanisms by which patterns of maternal drug use can be conveyed to offspring, thereby enhancing postnatal vulnerability for subsequent use and abuse.  相似文献   

2.
尼古丁对学习记忆间接作用的研究鲜有报道。昆明小鼠母鼠受孕后随机分为对照组(CON)和尼古丁组(NIC)。CON组母鼠自由饮水,NIC组母鼠饮水中给予浓度为50μg/mL的尼古丁。子代小鼠60日龄时,进行Morris水迷宫实验,之后在体记录海马区穿通纤维通路(perforant pathway,PP)至齿状回(dentate gyrus,DG)的长时程增强(long-term potentiation,LTP)。结果显示,NIC组仔鼠的逃避潜伏期从第3天开始明显大于CON组,目标象限停留时间所占百分比和穿越平台次数均低于CON组,LTP群峰电位幅值和场兴奋性突触后电位斜率也都显著低于CON组。说明由母体摄入的尼古丁,可经胎盘和乳汁明显作用于其子代,导致子代学习记忆功能的明显损伤,其可能机制是因为海马神经元突触传递可塑性的效率显著降低。  相似文献   

3.
We investigated the cardiovascular effects of lead exposure, emphasising its direct action on myocardial contractility. Male Wistar rats were sorted randomly into two groups: control (Ct) and treatment with 100 ppm of lead (Pb) in the drinking water. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anaesthetised and haemodynamic parameters and contractility of the left ventricular papillary muscles were recorded. Blood and tissue samples were properly stored for further biochemical investigations. Statistical analyses were considered to be significant at p<0.05. The lead concentrations in the blood reached approximately 13 µg/dL, while the bone was the site of the highest deposition of this metal. BP in the Pb-treated group was higher from the first week of lead exposure and remained at the same level over the next four weeks. Haemodynamic evaluations revealed increases in systolic (Ct: 96±3.79 vs. Pb: 116±1.37 mmHg) and diastolic blood pressure (Ct: 60±2.93 vs. Pb: 70±3.38 mmHg), left ventricular systolic pressure (Ct: 104±5.85 vs. Pb: 120±2.51 mmHg) and heart rate (Ct: 307±10 vs. Pb: 348±16 bpm). Lead treatment did not alter the force and time derivatives of the force of left ventricular papillary muscles that were contracting isometrically. However, our results are suggestive of changes in the kinetics of calcium (Ca++) in cardiomyocytes increased transarcolemmal Ca++ influx, low Ca++ uptake by the sarcoplasmic reticulum and high extrusion by the sarcolemma. Altogether, these results show that despite the increased Ca++ influx that was induced by lead exposure, the myocytes had regulatory mechanisms that prevented increases in force, as evidenced in vivo by the increased systolic ventricular pressure.  相似文献   

4.
Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.  相似文献   

5.
6.
We recently characterized an autocrine renin angiotensin system (RAS) in canine heart. Activation of Angiotensin II Type 1 Receptors (AT1Rs) induced electrical remodeling, including inhibition of the transient outward potassium current Ito, prolongation of the action potential (AP), increased calcium entry and increased contractility. Electrical properties of the mouse heart are very different from those of dog heart, but if a similar system existed in mouse, it could be uniquely studied through genetic manipulations. To investigate the presence of a RAS in mouse, we measured APs and Ito in isolated myocytes. Application of angiotensin II (A2) for 2 or more hours reduced Ito magnitude, without affecting voltage dependence, and prolonged APs in a dose-dependent manner. Based on dose-inhibition curves, the fast and slow components of Ito (Ito,fast and IK,slow) appeared to be coherently regulated by [A2], with 50% inhibition at an A2 concentration of about 400 nM. This very high K0.5 is inconsistent with systemic A2 effects, but is consistent with an autocrine RAS in mouse heart. Pre-application of the microtubule destabilizing agent colchicine eliminated A2 effects on Ito and AP duration, suggesting these effects depend on intracellular trafficking. Application of the biased agonist SII ([Sar1-Ile4-Ile8]A2), which stimulates receptor internalization without G protein activation, caused Ito reduction and AP prolongation similar to A2-induced changes. These data demonstrate AT1R mediated regulation of Ito in mouse heart. Moreover, all measured properties parallel those measured in dog heart, suggesting an autocrine RAS may be a fundamental feedback system that is present across species.  相似文献   

7.
Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol''s bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine''s odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams'' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our results suggest broader implications related to the consequence of fetal exposure with one substance of abuse and initial acceptability of others.  相似文献   

8.
Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM.  相似文献   

9.
围产期食物限制导致子代大鼠学习和记忆能力等的神经生物学变化,但其机制并不清楚。将成年Wistar雌性大鼠与雄性大鼠同笼,受孕后随机分为对照组 (n=9) 和食物限制组 (n=8) 。对照组母鼠在妊娠期和哺乳期自由进食和饮水,食物限制组母鼠从妊娠的第7天到子代大鼠出生后21天进行食物限制,食物限制量为对照组大鼠的50%。子代雄性大鼠成年后,通过Morris 水迷宫测试空间学习和记忆能力。之后,在海马CA1区在体记录场兴奋性突触后电位 (field excitatory postsynaptic potential,fEPSP),并采用免疫组织化学方法观察海马CA1区神经元型一氧化氮合酶 (nNOS) 阳性细胞密度的变化。结果表明,围产期食物限制降低了子代大鼠出生后第1、7、10、14和21天的体重,并减弱了成年子代大鼠的学习和记忆能力,海马CA1区fEPSP的斜率和nNOS阳性细胞的密度也明显降低。结果提示,围产期食物限制可能通过抑制NO的产生降低了海马突触可塑性,从而影响了子代大鼠的学习和记忆能力。  相似文献   

10.
Numerous studies have demonstrated that endocrine-disrupting compounds (EDC) are a possible cause of male reproductive organ malfunction and malformation. Cypermethrin (CYP) is a widely used synthetic pyrethroid and a potential EDC. This study aimed to examine the effects of perinatal exposure to low-dose CYP on the development and function of the offspring testes. Pregnant mice were intragastrically administered 0.12 to 12 mg/kg/day CYP from embryonic day 0.5 (E0.5) to weaning (PD21.5, postnatal day 21.5). Maternal exposure to 0.12, 1.2, and 12 mg/kg/day CYP affected the body and organ weight of the offspring. Exposure of CYP led to a dose-dependent decrease in the male-to-female sex ratio. A histopathological analysis revealed a thinner seminiferous epithelium layer at PD21.5, interstitial hyperplasia at PD45.5, and germ cell vacuolization at PD90.5 in the 12 mg/kg/day CYP group. The TUNEL assay results revealed increased germ cell apoptosis in the 12 mg/kg/day CYP group. The serum testosterone (T) level decreased, whereas the estradiol level increased with age in the 1.2 and 12 mg/kg/day CYP groups. The RT-PCR analysis demonstrated decreased expression of T production-related, mitosis-related, and meiosis-related genes in the 1.2 and 12 mg/kg/day CYP groups. The in vitro experimental results demonstrated reduced expression of steroidogenesis genes and decreased T levels. It is concluded that perinatal exposure to low-dose CYP affects testes development and function in adults.  相似文献   

11.
There is growing awareness that prenatal adversity may increase the risk of autism spectrum disorder (ASD). Here, we examined the association between hypertensive disorders of pregnancy (HDP) and ASD risk at 7 years of age using the Millennium Cohort Study (MCS), a representative cohort of 13,192 children born in the UK from 2000 to 2001. We also sought to examine cytokine expression in the serum of women with pre-eclampsia, which is the most common HDP, and whether exposure of foetal neurons to this serum could change patterns of neuronal growth. HDP were reported by mothers 9 months post-delivery. ASD was parent reported at age seven, based on a doctor or health care professional’s diagnosis. Weighted logistic regression was used for data analysis, adjusting for several potential confounders including maternal alcohol consumption, education, depression, age, and poverty status. Sensitivity analyses were performed excluding pre-term births, small for gestational age (SGA), and pre-pregnancy hypertension and depression. There was a significant association between HDP and a twofold increased risk of ASD (AOR = 2.10 [95% CI 1.20–3.70]). Excluding preterm births, SGA births, and offspring of women who had pre-pregnancy hypertension or over the age of 40 did not change the results materially. At the cellular level, exposure of foetal cortical neurons to 3% serum isolated from women with an established HDP increased neuronal growth and branching in vitro. These findings indicate that HDP exposure may increase the risk of ASD in the offspring.  相似文献   

12.
This study evaluates the effect of prolonged ethanol ingestion on the renal ability to concentrate urine. Suckling Wistar rats born to mothers given ethanol before and during gestation and suckling periods (ethanol-exposed offspring) were used and the results were compared with those obtained from offspring of dams given diets containing no ethanol. Comparisons were also made between progenitors with or without prolonged ethanol ingestion. Body and kidney weights; arginine-vasopressin (AVP) and aldosterone plasma levels; plasma, urine and renal papillary osmolality; urine outflow; kidney AQP2, AQP3 and AQP4 expression and diencephalon AVP mRNA expression were determined. As compared with control offspring, the ethanol-exposed offspring present i) lower body and kidney weights; ii) lower urine outflow; iii) higher renal AQP2 and AQP3 mRNA; iv) higher renal AQP2 protein content and v) higher urine and renal papillary osmolality. These changes were also observed in the ethanol-treated progenitors, although they were of smaller magnitude. Plasma osmolality, renal AQP4 mRNA, AVP plasma levels and diencephalon AVP mRNA expression were not affected by the ethanol treatment. Plasma levels of aldosterone were only significantly increased in the ethanol-exposed suckling rats. It is concluded that maternal ethanol ingestion before and during gestation and suckling periods affects the renal function of the offspring, up-regulating renal AQP2 expression by an AVP-independent mechanism. Ethanol-treated progenitors manifest similar renal changes, although of lesser magnitude than the offspring.  相似文献   

13.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

14.
15.
Maternal obesity in women is increasing worldwide. The objective of this study was to evaluate differences in adipose tissue metabolism and function in adult male offspring from obese and control fed mothers subjected to an ad libitum feeding challenge. We developed a model in which obese ewes were fed 150% of feed provided for controls from 60 days before mating to term. All ewes were fed to requirements during lactation. After weaning, F1 male offspring were fed only to maintenance requirements until adulthood (control = 7, obese = 6), when they were fed ad libitum for 12 weeks with intake monitored. At the end of the feeding challenge offspring were given an intravenous glucose tolerance test (IVGTT), necropsied, and adipose tissue collected. During the feeding trial F1obese males consumed more (P < 0.01), gained more weight (P < 0.01) and became heavier (P < 0.05) than F1control males. During IVGTT, Obese F1 offspring were hyperglycemic and hypoinsulinemic (P < 0.01) compared to F1 control F1. At necropsy perirenal and omental adipose depots weights were 47% and 58% greater respectively and subcutaneous fat thickness 41% greater in F1obese vs F1control males (P < 0.05). Adipocyte diameters were greater (P ≤ 0.04) in perirenal, omental and subcutaneous adipose depots in F1obese males (11, 8 and 7% increase vs. control, respectively). When adipose tissue was incubated for 2 hrs with C-14 labeled acetate, subcutaneous, perirenal, and omental adipose tissue of F1 obese males exhibited greater incorporation (290, 83, and 90% increase vs. control, respectively P < 0.05) of acetate into lipids. Expression of fatty acid transporting, binding, and syntheses mRNA and protein was increased (P < 0.05) compared to F1 control offspring. Maternal obesity increased appetite and adiposity associated with increased adipocyte diameters and increased fatty acid synthesis in over-nourished adult male offspring.  相似文献   

16.
The postnatal development of [3H]dihydroalprenolol binding to beta-adrenergic receptors has been studied in frontal cortex, cerebellum, striatum, and hypothalamus of the rat after prenatal and perinatal exposure to diazepam. Dams were injected subcutaneously with single daily doses of 1 mg of diazepam/kg from day 7 to 20 of gestation or from day 15 of gestation to day 6 after birth. Prenatal exposure had no effect on litter size or length of gestation or on the postnatal development of body and brain weights of the progeny. However, a reduced mortality of the pups was observed in relation to vehicle-treated controls until postnatal day 10. Prenatal diazepam administration decreased [3H]dihydroalprenolol binding in frontal cortex, striatum, and hypothalamus but not in cerebellum. This decrease in beta-adrenergic receptor binding was due to a decrease in receptor density rather than in receptor affinity. In contrast, perinatal diazepam exposure led to a transient decrease in [3H]dihydroalprenolol binding limited to the frontal cortex. The permanent reduction in number of beta-adrenergic receptors, which depends on the scaling and duration of the drug application period, points to the necessity of a prolonged evaluation of effects of exposure to psychotropic drugs in early stages of brain development.  相似文献   

17.
Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ∼3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.  相似文献   

18.
Epidemiological studies have demonstrated that offspring born to mothers preeclampsia (PE) are at increased risk for developing cardiovascular diseases after birth, but the underlying mechanism is unknown. Angiotensin II receptor type 1 autoantibody (AT1-AA), an agonist acting via activation of the AT1 receptor, is believed to be involved in the pathogenesis of both PE and fetal growth restriction. The aim of the present study was to confirm the hypothesis that prenatal AT1-AA exposure increases the heart susceptibility to ischemia/reperfusion injury (IRI) in the offspring in an AT1-AA-induced animal model of PE, and determine whether or not the increase of maternal AT1-AA level is a factor contributing to sustained abnormalities of the heart structure during infancy. The hearts of 45-day-old offspring rats were studied using Langendorff preparation to determine the susceptibility of the heart to IRI. The results showed that the body weight of the maternal rats was not significantly different between the study and control groups, but the body weight of their offspring in AT1-AA group was decreased slightly at day 21 of gestational age, and at day 3 after birth. Although the heart weight index was not significantly affected at all ages examined, AT1-AA significantly increased the size of myocardial cells of the left ventricle (LV) at the age of 45 days. AT1-AA gained access to fetal circulation via the placenta and induced apoptosis of fetal myocardial cells. AT1-AA also significantly delayed recovery from IRI and affected the LV function of 45-day-old offspring. This was associated with a significant increase in IRI-induced LV myocardial infarct size. These results suggest that AT1-AA induced abnormal apoptosis of fetal myocardial cells during the fetal period and increased the cardiac susceptibility to IRI in adult offspring.  相似文献   

19.
Abstract: Recent studies have suggested a role for an inhibitory guanine nucleotide binding (Gi) protein and protein (serine/threonine) phosphatase 2A (PP2A) in the angiotensin II type 2 (AT2) receptor-mediated stimulation of neuronal K+ currents. In the present study we have directly analyzed the effects of angiotensin II on PP2A activity in neurons cultured from newborn rat hypothalamus and brainstem. Angiotensin II elicited time (30 min–24 h)- and concentration (10 n M -1 µ M )-dependent increases in PP2A activity in these cells, an effect mimicked by the AT2 receptor ligand CGP-42112A. These effects of angiotensin II and CGP-42112A involve AT2 receptors, because they were inhibited by the AT2 receptor-selective ligand PD 123,319 (1 µ M ) but not by the angiotensin II type 1 receptor antagonist losartan (1 µ M ). Furthermore, the stimulatory effects of angiotensin II and CGP-42112A on PP2A activity were inhibited by pretreatment of cultures with pertussis toxin (200 ng/ml; 24 h), indicating the involvement of a Gi protein. These effects of angiotensin II and CGP-42112A appear to be via activation of PP2A, and western blot analyses revealed no effects of either peptide on the protein levels of the catalytic subunit of PP2A in cultured neurons. In summary, these data suggest that PP2A is a cellular target modified following neuronal AT2 receptor activation.  相似文献   

20.
Previous evidence has suggested that brain catecholamine levels are important in the regulation of central angiotensin II receptors. In the present study, the effects of norepinephrine and 3,4-dihydroxyphenylethylamine (dopamine) on angiotensin II receptor regulation in neuronal cultures from rat hypothalamus and brainstem have been examined. Both catecholamines elicit significant decreases in [125I]angiotensin II-specific binding to neuronal cultures prepared from normotensive rats, effects that are dose dependent and that are maximal within 4-8 h of preincubation. Saturation and Scatchard analyses revealed that the norepinephrine-induced decrease in the binding is due to a decrease in the number of angiotensin II receptors in neuronal cultures, with little effect on the receptor affinity. Norepinephrine has no significant actions on [125I]angiotensin II binding in cultures prepared from spontaneously hypertensive rats. The downregulation of angiotensin II receptors by norepinephrine or dopamine is blocked by alpha 1-adrenergic and not by other adrenergic antagonists, a result suggesting that this effect is initiated at the cell surface involving alpha 1-adrenergic receptors. This is further supported by our data indicating a parallel downregulation of specific alpha 1-adrenergic receptors elicited by norepinephrine. In summary, these results show that norepinephrine and dopamine are able to alter the regulation of neuronal angiotensin II receptors by acting at alpha 1-adrenergic receptors, which is a novel finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号