首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Autophagy》2013,9(8):910-911
Protein folding stress in the endoplasmic reticulum (ER) may lead to activation of the unfolded protein response (UPR), aimed to restore proteostasis in the ER. Previously, we demonstrated that UPR activation is an early event in Alzheimer disease (AD) brain. In our recent work we investigated whether activation of the UPR is employed to enhance the capacity of the ubiquitin proteasome system or autophagy in neuronal cells. We showed that the levels, composition and activity of the proteasome are not regulated by the UPR. In contrast, UPR activation enhances autophagy and LC3 levels are increased in neurons displaying UPR activation in AD brain. Our data suggest that autophagy is the major degradational pathway following UPR activation in neuronal cells and indicate a connection between UPR activation and autophagic pathology in AD brain.  相似文献   

3.
Protein folding stress in the endoplasmic reticulum (ER) may lead to activation of the unfolded protein response (UPR), aimed to restore proteostasis in the ER. Previously, we demonstrated that UPR activation is an early event in Alzheimer disease (AD) brain. In our recent work we investigated whether activation of the UPR is employed to enhance the capacity of the ubiquitin proteasome system or autophagy in neuronal cells. We showed that the levels, composition and activity of the proteasome are not regulated by the UPR. In contrast, UPR activation enhances autophagy and LC3 levels are increased in neurons displaying UPR activation in AD brain. Our data suggest that autophagy is the major degradational pathway following UPR activation in neuronal cells and indicate a connection between UPR activation and autophagic pathology in AD brain.  相似文献   

4.
5.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

6.
The human ribosomal P complex, which consists of the acidic ribosomal P proteins RPLP0, RPLP1, and RPLP2 (RPLP proteins), recruits translational factors, facilitating protein synthesis. Recently, we showed that overexpression of RPLP1 immortalizes primary cells and contributes to transformation. Moreover, RPLP proteins are overexpressed in human cancer, with the highest incidence in breast carcinomas. It is thought that disruption of the P complex would directly affect protein synthesis, causing cell growth arrest and eventually apoptosis. Here, we report a distinct mechanism by which cancer cells undergo cell cycle arrest and induced autophagy when RPLP proteins are downregulated. We found that absence of RPLP0, RPLP1, or RPLP2 resulted in reactive oxygen species (ROS) accumulation and MAPK1/ERK2 signaling pathway activation. Moreover, ROS generation led to endoplasmic reticulum (ER) stress that involved the EIF2AK3/PERK-EIF2S1/eIF2α-EIF2S2-EIF2S3-ATF4/ATF-4- and ATF6/ATF-6-dependent arms of the unfolded protein response (UPR). RPLP protein-deficient cells treated with autophagy inhibitors experienced apoptotic cell death as an alternative to autophagy. Strikingly, antioxidant treatment prevented UPR activation and autophagy while restoring the proliferative capacity of these cells. Our results indicate that ROS are a critical signal generated by disruption of the P complex that causes a cellular response that follows a sequential order: first ROS, then ER stress/UPR activation, and finally autophagy. Importantly, inhibition of the first step alone is able to restore the proliferative capacity of the cells, preventing UPR activation and autophagy. Overall, our results support a role for autophagy as a survival mechanism in response to stress due to RPLP protein deficiency.  相似文献   

7.
《Autophagy》2013,9(4):612-614
Stress in the tumor microenvironment in the form of hypoxia and low glucose/amino acid levels activates the evolutionarily conserved cellular adaptation program called the unfolded protein response (UPR) promoting cell survival in such conditions. Our recent studies showed that cell autonomous stress such as activation of the proto-oncogene MYC/c-Myc, can also trigger the UPR and induce endoplasmic reticulum (ER) stress-mediated autophagy. Amelioration of ER stress or autophagy enhances cancer cell death in vitro and attenuates tumor growth in vivo. Here we will discuss the role of the UPR and autophagy in MYC-induced transformation. Our findings demonstrate that the EIF2AK3/PERK-EIF2S1/eIF2α-ATF4 arm of the UPR promotes tumorigenesis by activating autophagy and enhancing tumor formation. Therefore, the UPR is an attractive target in MYC-driven cancers.  相似文献   

8.
9.
Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca2+ mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells.  相似文献   

10.
The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under conditions of endoplasmic reticulum (ER) stress. The UPR controls diverse processes such as protein folding, secretion, ER biogenesis, protein quality control and macroautophagy. Occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation, including Amyotrophic lateral sclerosis, Prion-related disorders, and conditions such as Parkinson's, Huntington's, and Alzheimer's disease. Strong correlations are observed between disease progression, accumulation of protein aggregates, and induction of the UPR in animal and in vitro models of neurodegeneration. In addition, the first reports are available describing the engagement of ER stress responses in brain post-mortem samples from human patients. Despite such findings, the role of the UPR in the central nervous system has not been addressed directly and its contribution to neurodegeneration remains speculative. Recently, however, pharmacological manipulation of ER stress and autophagy - a stress pathway modulated by the UPR - using chemical chaperones and autophagy activators has shown therapeutic benefits by attenuating protein misfolding in models of neurodegenerative disease. The most recent evidence addressing the role of the UPR and ER stress in neurodegenerative disorders is reviewed here, along with therapeutic strategies to alleviate ER stress in a disease context.  相似文献   

11.
12.
Alzheimer??s disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid ?? (A??) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.  相似文献   

13.
Ke PY  Chen SS 《Autophagy》2011,7(5):533-535
Autophagy is an evolutionarily conserved process that catabolizes intracellular components and maintains cellular homeostasis. Autophagy involves the sequestration of cytoplasmic content within a double-membraned autophagosome, and the fusion of the autophagosome with a lysosome to form an autolysosome for subsequent degradation (Fig. 1A). Autophagy plays a pivotal role in various aspects of cellular responses to stresses, such as nutrient deprivation, damaged organelles, aggregated proteins, exposure to endoplasmic reticulum (ER) stress and pathogen infections. Virus infection often leads to ER stress and induction of the unfolded protein response (UPR). Recent studies reveal that virus-induced UPR may activate autophagy to support the virus life cycle. However, the exact roles of the UPR and autophagy in host cell-virus interactions are still enigmatic.  相似文献   

14.

Objective

To determine whether the Unfolded Protein Response (UPR) sensors (PERK, ATF6 and IRE-1) can be targeted to promote death of Multiple Myeloma (MM) cells.

Methods

We have knocked-down separately each UPR stress sensor in human MM cell lines using RNA interference and followed MM cell death by monitoring the membrane, mitochondrial and nuclear alterations. Involvement of caspases in MM cell death consecutive to UPR sensor knock-down was analyzed by western blotting, measurement of their enzymatic activity using fluorigenic substrates and susceptibility to a pan-caspase inhibitor. Activation of the autophagic process was measured directly by detection of autophagosomes (electronic microscopy), monodansylcadaverine staining, production of the cleaved form of the microtubule-associated protein 1A/1B light chain 3 (LC3) and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3MA and bafilomycin A1.

Results

We show that extinction of a single UPR stress sensor (PERK) induces a non-apoptotic form of cell death in MM cells that requires autophagy for its execution. We also show that this cytotoxic autophagic process represses the apoptosis program by reducing the cytosolic release of the apoptogenic factors Smac/DIABLO and cytochrome c.

Interpretation

Altogether our findings suggest that autophagy can contribute to execution of death in mammalian cells that are exposed to mild ER stress. They also suggest that the autophagic process can regulate the intrinsic apoptotic pathway by inhibiting production of death effectors by the mitochondria, thus preventing formation of a functional apoptosome. Altogether these findings give credit to the idea that UPR sensors can be envisaged as therapeutic targets for the treatment of MM.  相似文献   

15.
《Autophagy》2013,9(5):533-535
Autophagy is an evolutionarily conserved process that catabolizes intracellular components and maintains

cellular homeostasis. Autophagy involves the sequestration of cytoplasmic content within a double-membraned

autophagosome, and the fusion of the autophagosome with a lysosome to form an autolysosome for subsequent degradation (Fig. 1A). Autophagy plays a pivotal role in various aspects of cellular responses to stresses, such as nutrient deprivation, damaged organelles, aggregated proteins, exposure to endoplasmic

reticulum (ER) stress and pathogen infections. Virus infection often leads to ER stress and induction of the unfolded protein response (UPR). Recent studies reveal that virus-induced UPR may activate autophagy to support the virus life cycle. However, the exact roles of the UPR and autophagy in host cell-virus interactions are still enigmatic.  相似文献   

16.
17.
The neural dysfunction in Alzheimer's disease (AD) could arise from endoplasmic reticulum (ER) stress and deficits of the unfolded protein response (UPR). To explore whether tau hyperphosphorylation, a hallmark of AD brain pathologies, plays a role in ER stress-induced alterations of cell viability, we established cell lines with stable expression of human tau (HEK293/tau) or the vector (HEK293/vec) and treated the cells with thapsigargin (TG), an ER stress inducer. We observed that the HEK293/tau cells were more resistant than the HEK293/vec cells to the TG-induced apoptosis, importantly, a time dependent increase of tau phosphorylation at Thr205 and Thr231 sites was positively correlated with the inhibition of apoptosis. We also observed that expression of tau upregulated phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. The potentiation of UPR was also detected in HEK293/tau cells treated with other ER stress inducers, including staurosporine, camptothecin and hydrogen peroxide, in which a suppressed apoptosis was also shown. Our data suggest that tau hyperphosphorylation could attenuate the ER stress-induced apoptosis with the mechanism involving upregulation of UPR system.  相似文献   

18.
19.
To explore the relationship between UPR and autophagy in intestinal epithelial cells, we investigated whether autophagy was induced by endoplasmic reticulum (ER) stress in colon cancer cell lines. We demonstrated that autophagy was induced by ER stress in HT29, SW480, and Caco-2 cells. In these cells, inositol-requiring enzyme1α (IRE1α) and C/EBP homologous protein (CHOP) were involved in the ER stress–autophagy pathway, and CHOP was a regulator of IRE1α protein expression. Our findings suggest that CHOP promotes IRE1α and autophagy especially in ER stress conditions. This study will provide important insights into the disclosure of the ER stress–autophagy pathway.  相似文献   

20.
Alzheimer’s disease (AD) is characterized by the deposition of aggregated amyloid-beta (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of neuronal apoptosis and inflammation by Aβ-induced ER stress to exercise training are not fully understood. Here, we demonstrated that treadmill exercise (TE) prevented PS2 mutation-induced memory impairment and reduced Aβ-42 deposition through the inhibition of β-secretase (BACE-1) and its product, C-99 in cortex and/or hippocampus of aged PS2 mutant mice. We also found that TE down-regulated the expression of GRP78/Bip and PDI proteins and inhibited activation of PERK, eIF2α, ATF6α, sXBP1 and JNK-p38 MAPK as well as activation of CHOP, caspase-12 and caspase-3. Moreover, TE up-regulated the expression of Bcl-2 and down-regulated the expressions of Bax in the hippocampus of aged PS2 mutant mice. Finally, the generation of TNFα and IL-1α and the number of TUNEL-positive cells in the hippocampus of aged PS2 mutant mice was also prevented or decreased by TE. These results showed that TE suppressed the activation of UPR signaling pathways as well as inhibited the apoptotic pathways of the UPR and inflammatory response following Aβ-induced ER stress. Thus, therapeutic strategies that modulate Aβ-induced ER stress through TE could represent a promising approach for the prevention or treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号