首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The most basic and significant issue in complex network analysis is community detection, which is a branch of machine learning. Most current community detection approaches, only consider a network's topology structures, which lose the potential to use node attribute information. In attributed networks, both topological structure and node attributed are important features for community detection. In recent years, the spectral clustering algorithm has received much interest as one of the best performing algorithms in the subcategory of dimensionality reduction. This algorithm applies the eigenvalues of the affinity matrix to map data to low-dimensional space. In the present paper, a new version of the spectral cluster, named Attributed Spectral Clustering (ASC), is applied for attributed graphs that the identified communities have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the goodness of the affinity matrix, the ASC algorithm will use the Topological and Attribute Random Walk Affinity Matrix (TARWAM) as a new affinity matrix to calculate the similarity between nodes. TARWAM utilizes the biased random walk to integrate network topology and attribute information. It can improve the similarity degree among the pairs of nodes in the same density region of the attributed network, without the need for parameter tuning. The proposed approach has been compared to other primary and new attributed graph clustering algorithms based on synthetic and real datasets. The experimental results show that the proposed approach is more effective and accurate compared to other state-of-the-art attributed graph clustering techniques.

  相似文献   

2.
MOTIVATION: Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. RESULTS: This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.  相似文献   

3.

Background  

Genome scale data on protein interactions are generally represented as large networks, or graphs, where hundreds or thousands of proteins are linked to one another. Since proteins tend to function in groups, or complexes, an important goal has been to reliably identify protein complexes from these graphs. This task is commonly executed using clustering procedures, which aim at detecting densely connected regions within the interaction graphs. There exists a wealth of clustering algorithms, some of which have been applied to this problem. One of the most successful clustering procedures in this context has been the Markov Cluster algorithm (MCL), which was recently shown to outperform a number of other procedures, some of which were specifically designed for partitioning protein interactions graphs. A novel promising clustering procedure termed Affinity Propagation (AP) was recently shown to be particularly effective, and much faster than other methods for a variety of problems, but has not yet been applied to partition protein interaction graphs.  相似文献   

4.
MOTIVATION: This paper introduces the application of a novel clustering method to microarray expression data. Its first stage involves compression of dimensions that can be achieved by applying SVD to the gene-sample matrix in microarray problems. Thus the data (samples or genes) can be represented by vectors in a truncated space of low dimensionality, 4 and 5 in the examples studied here. We find it preferable to project all vectors onto the unit sphere before applying a clustering algorithm. The clustering algorithm used here is the quantum clustering method that has one free scale parameter. Although the method is not hierarchical, it can be modified to allow hierarchy in terms of this scale parameter. RESULTS: We apply our method to three data sets. The results are very promising. On cancer cell data we obtain a dendrogram that reflects correct groupings of cells. In an AML/ALL data set we obtain very good clustering of samples into four classes of the data. Finally, in clustering of genes in yeast cell cycle data we obtain four groups in a problem that is estimated to contain five families. AVAILABILITY: Software is available as Matlab programs at http://neuron.tau.ac.il/~horn/QC.htm.  相似文献   

5.
In this paper, we present a novel approach Bio-IEDM (biomedical information extraction and data mining) to integrate text mining and predictive modeling to analyze biomolecular network from biomedical literature databases. Our method consists of two phases. In phase 1, we discuss a semisupervised efficient learning approach to automatically extract biological relationships such as protein-protein interaction, protein-gene interaction from the biomedical literature databases to construct the biomolecular network. Our method automatically learns the patterns based on a few user seed tuples and then extracts new tuples from the biomedical literature based on the discovered patterns. The derived biomolecular network forms a large scale-free network graph. In phase 2, we present a novel clustering algorithm to analyze the biomolecular network graph to identify biologically meaningful subnetworks (communities). The clustering algorithm considers the characteristics of the scale-free network graphs and is based on the local density of the vertex and its neighborhood functions that can be used to find more meaningful clusters with different density level. The experimental results indicate our approach is very effective in extracting biological knowledge from a huge collection of biomedical literature. The integration of data mining and information extraction provides a promising direction for analyzing the biomolecular network  相似文献   

6.
7.
The number of distinct foods consumed in a meal is of significant clinical concern in the study of obesity and other eating disorders. This paper proposes the use of information contained in chewing and swallowing sequences for meal segmentation by food types. Data collected from experiments of 17 volunteers were analyzed using two different clustering techniques. First, an unsupervised clustering technique, Affinity Propagation (AP), was used to automatically identify the number of segments within a meal. Second, performance of the unsupervised AP method was compared to a supervised learning approach based on Agglomerative Hierarchical Clustering (AHC). While the AP method was able to obtain 90% accuracy in predicting the number of food items, the AHC achieved an accuracy >95%. Experimental results suggest that the proposed models of automatic meal segmentation may be utilized as part of an integral application for objective Monitoring of Ingestive Behavior in free living conditions.  相似文献   

8.
9.
In this paper we present modern approaches to the classification of hydrobiological samples based on various metrics of species-structure similarity—Euclidean distance, Renkonen index, and the cosine of the angle between the species abundances vectors. We use the cophenetic correlation coefficient, Gower distance, and Shepard-like plot for the justification of clustering method. For the choice of the optimal number of clusters, we apply approaches based on silhouette widths and binary matrices representing partitions. An analysis of the spatial structure of zooplankton communities in the small Linda River shows that average agglomerative clustering is an optimal algorithm for objects of this type. A comparative analysis of the results of cluster analysis on the basis of different similarity metrics shows that the most adequate classification can be obtained using the cosine of the angle between the species abundances vectors and the Renkonen index, whereas the classification based on the Euclidean distances is less successful from the biological point of view. Approaches outlined in this paper allow researchers to make quantitative decisions about key elements of classification, greatly reducing the subjectivity of the cluster analysis results.  相似文献   

10.
In this paper, we describe a new brute force algorithm for building the -Nearest Neighbor Graph (k-NNG). The k-NNG algorithm has many applications in areas such as machine learning, bio-informatics, and clustering analysis. While there are very efficient algorithms for data of low dimensions, for high dimensional data the brute force search is the best algorithm. There are two main parts to the algorithm: the first part is finding the distances between the input vectors, which may be formulated as a matrix multiplication problem; the second is the selection of the k-NNs for each of the query vectors. For the second part, we describe a novel graphics processing unit (GPU)-based multi-select algorithm based on quick sort. Our optimization makes clever use of warp voting functions available on the latest GPUs along with user-controlled cache. Benchmarks show significant improvement over state-of-the-art implementations of the k-NN search on GPUs.  相似文献   

11.
cluML     
cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.  相似文献   

12.
The retrotransposon-based sequence-specific amplification polymorphism (SSAP) marker system was used to assess the genetic diversities of collections of tomato and pepper industrial lines. The utility of SSAP markers was compared to that of amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. On the basis of our results, SSAP is most informative of the three systems for studying genetic diversity in tomato and pepper, with a significant correlation of genetic relationships between different SSAP datasets and between SSAP, AFLP and SSR markers. SSAP showed about four- to ninefold more diversity than AFLP and had the highest number of polymorphic bands per assay ratio and the highest marker index. For tomato, SSAP is more suitable for inferring overall genetic variation and relationships, while SSR has the ability to detect specific genetic relationships. All three marker results for pepper showed general agreement with pepper types. Additionally, retrotransposon sequences isolated from one species can be used in related Solanaceae genera. These results suggest that different marker systems are suited for studying genetic diversity in different contexts depending on the group studied, where discordance between different marker systems can be very informative for understanding genetic relationships within the study group.  相似文献   

13.
Scoring clustering solutions by their biological relevance   总被引:1,自引:0,他引:1  
MOTIVATION: A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. RESULTS: We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. AVAILABILITY: The software is available from the authors upon request.  相似文献   

14.
In this paper, a magnetic electrochemical immunoassay that uses a superhydrophobic surface-based analytical platform (SSAP) has been initially developed for detection of Schistosoma japonicum (Sj) antibodies (SjAb). The SSAP is fabricated by modifying the inner surfaces of plastic test tubes with superhydrophobic polycarbonate coatings that show a water contact angle up to 160° and a water rolling angle less than 5°. In a noncompetitive sandwich format, the SjAb immunoassay with magnetic particles is based on sensitive stripping voltammetry analysis coupled with the copper enhanced Au nanoparticle tag amplification. This technique is quantitatively sensitive to SjAb concentrations ranging from 2 ng ml(-1) to 15 μg ml(-1), with a detection limit of ~1.3 ngml(-1). Moreover, the results of assaying several serum specimens prove its feasibility of practical applications. The self-cleaning SSAP can be reused, because no aqueous samples reagents or contaminate the superhydrophobic polycarbonate during the experiments. The comparison study additionally demonstrates that the SSAP-based magnetic electrochemical immunoassays can offer preferable advantages over the existing approaches for SjAb detection, in terms of volumes of samples and reagents, assay time, and detection limit.  相似文献   

15.
High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.  相似文献   

16.
Cluster analysis methods have been extensively researched, but the adoption of new methods is often hindered by technical barriers in their implementation and use. WebGimm is a free cluster analysis web-service, and an open source general purpose clustering web-server infrastructure designed to facilitate easy deployment of integrated cluster analysis servers based on clustering and functional annotation algorithms implemented in R. Integrated functional analyses and interactive browsing of both, clustering structure and functional annotations provides a complete analytical environment for cluster analysis and interpretation of results. The Java Web Start client-based interface is modeled after the familiar cluster/treeview packages making its use intuitive to a wide array of biomedical researchers. For biomedical researchers, WebGimm provides an avenue to access state of the art clustering procedures. For Bioinformatics methods developers, WebGimm offers a convenient avenue to deploy their newly developed clustering methods. WebGimm server, software and manuals can be freely accessed at .  相似文献   

17.
Literature search is a process in which external developers provide alternative representations for efficient data mining of biomedical literature such as ranking search results, displaying summarized knowledge of semantics and clustering results into topics. In clustering search results, prominent vocabularies, such as GO (Gene Ontology), MeSH(Medical Subject Headings) and frequent terms extracted from retrieved PubMed abstracts have been used as topics for grouping. In this study, we have proposed FNeTD (Frequent Nearer Terms of the Domain) method for PubMed abstracts clustering. This is achieved through a two-step process viz; i) identifying frequent words or phrases in the abstracts through the frequent multi-word extraction algorithm and ii) identifying nearer terms of the domain from the extracted frequent phrases using the nearest neighbors search. The efficiency of the clustering of PubMed abstracts using nearer terms of the domain was measured using F-score. The present study suggests that nearer terms of the domain can be used for clustering the search results.  相似文献   

18.

Background

Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis.

Findings

We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering.

Conclusion

Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/  相似文献   

19.
Multiple protein structure alignment.   总被引:5,自引:2,他引:3       下载免费PDF全文
A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core.  相似文献   

20.
Measuring the (dis)similarity between RNA secondary structures is critical for the study of RNA secondary structures and has implications to RNA functional characterization. Although a number of methods have been developed for comparing RNA structural similarities, their applications have been limited by the complexity of the required computation. In this paper, we present a novel method for comparing the similarity of RNA secondary structures generated from the same RNA sequence, i.e., a secondary structure ensemble, using a matrix representation of the RNA structures. Relevant features of the RNA secondary structures can be easily extracted through singular value decomposition (SVD) of the representing matrices. We have mapped the feature vectors of the singular values to a kernel space, where (dis)similarities among the mapped feature vectors become more evident, making clustering of RNA secondary structures easier to handle. The pair-wise comparison of RNA structures is achieved through computing the distance between the singular value vectors in the kernel space. We have applied a fuzzy kernel clustering method, using this similarity metric, to cluster the RNA secondary structure ensembles. Our application results suggest that our fuzzy kernel clustering method is highly promising for classifications of RNA structure ensembles, because of its low computational complexity and high clustering accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号