首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Harley VS  Dance DA  Drasar BS  Tovey G 《Microbios》1998,96(384):71-93
Burkholderia pseudomallei causes melioidosis, a serious and often fatal bacterial infection. B. pseudomallei can behave as a facultatively intracellular organism and this ability may be important in the pathogenesis of both acute and chronic infection. The uptake of B. pseudomallei and other Burkholderia spp. by cells in tissue culture was examined by electron microscopy. B. pseudomallei can invade cultured cell lines including phagocytic lines such as RAW264, J774 and U937, and non-phagocytic lines such as CaCO-2, Hep2, HeLa, L929, McCoy, Vero and CHO. Uptake was followed by the intracellular multiplication of B. pseudomallei and the induction of cell fusion and multinucleate giant cell formation. Similar effects were produced by B. mallei and B. thailandensis.  相似文献   

2.
Burkholderia pseudomallei, the cause of the severe disease melioidosis in humans and animals, is a gram-negative saprophyte living in soil and water of areas of endemicity such as tropical northern Australia and Southeast Asia. Infection occurs mainly by contact with wet contaminated soil. The environmental distribution of B. pseudomallei in northern Australia is still unclear. We developed and evaluated a direct soil B. pseudomallei DNA detection method based on the recently published real-time PCR targeting the B. pseudomallei type III secretion system. The method was evaluated by inoculating different soil types with B. pseudomallei dilution series and by comparing B. pseudomallei detection rate with culture-based detection rate for 104 randomly collected soil samples from the Darwin rural area in northern Australia. We found that direct soil B. pseudomallei DNA detection not only was substantially faster than culture but also proved to be more sensitive with no evident false-positive results. This assay provides a new tool to detect B. pseudomallei in soil samples in a fast and highly sensitive and specific manner and is applicable for large-scale B. pseudomallei environmental screening studies or in outbreak situations. Furthermore, analysis of the 104 collected soil samples revealed a significant association between B. pseudomallei-positive sites and the presence of animals at these locations and also with moist, reddish brown-to-reddish gray soils.  相似文献   

3.
4.
Length polymorphisms within the 16S-23S ribosomal DNA internal transcribed spacer (ITS) have been described as stable genetic markers for studying bacterial phylogenetics. In this study, we used these genetic markers to investigate phylogenetic relationships in Burkholderia pseudomallei and its near-relative species. B. pseudomallei is known as one of the most genetically recombined bacterial species. In silico analysis of multiple B. pseudomallei genomes revealed approximately four homologous rRNA operons and ITS length polymorphisms therein. We characterized ITS distribution using PCR and analyzed via a high-throughput capillary electrophoresis in 1,191 B. pseudomallei strains. Three major ITS types were identified, two of which were commonly found in most B. pseudomallei strains from the endemic areas, whereas the third one was significantly correlated with worldwide sporadic strains. Interestingly, mixtures of the two common ITS types were observed within the same strains, and at a greater incidence in Thailand than Australia suggesting that genetic recombination causes the ITS variation within species, with greater recombination frequency in Thailand. In addition, the B. mallei ITS type was common to B. pseudomallei, providing further support that B. mallei is a clone of B. pseudomallei. Other B. pseudomallei near-neighbors possessed unique and monomorphic ITS types. Our data shed light on evolutionary patterns of B. pseudomallei and its near relative species.  相似文献   

5.
Antisera to the antigens of 5 fractions, isolated as the result of the separation of P. pseudomallei aqueous saline extract by continuous electrophoresis in the vertical block of granulated gel, have been obtained. Immunoelectrophoresis with the use of P. pseudomallei aqueous saline extract has revealed that antisera to electrophoretic fractions contain antibodies mainly to the antigens of the corresponding fractions, which shows that this technique ensures the effective separation of P. pseudomallei biopolymers by their electrophoretic motility and molecular weight. These antisera differ in their species specificity. Thus, antisera to antigens with anode motility have been found to contain antibodies mainly to P. pseudomallei antigens and antisera to electroneutral antigens or to those with cathode motility, to P. pseudomallei and P. mallei antigens.  相似文献   

6.
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis.  相似文献   

7.
Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.  相似文献   

8.
Burkholderia pseudomallei is a causative agent of melioidosis, a life threatening disease which affects humans and animals in tropical and subtropical areas. This bacterium is known to survive and multiply inside cells such as macrophages. The mechanism of host defense against this bacterium is still unknown. In this study, we demonstrated that B. pseudomallei exhibited unique macrophage activation activity compared with Escherichia coli and Salmonella typhi. The mouse macrophage cell line (RAW 264.7) infected with B. pseudomallei at MOI of 0.1:1, 1:1 and 10:1 did not express a detectable level of inducible nitric oxide synthase (iNOS). Moreover, the B. pseudomallei infected cells released TNF-alpha only when they were infected with high MOI (10:1). Unlike the cells infected with B. pseudomallei, the cells infected with E. coli, and S. typhi expressed iNOS even at MOI of 0.1:1. These infected cells also released a significantly higher level of TNF-alpha at the low MOI ratio. The cells that were preactivated with IFN-gamma prior to being infected with B. pseudomallei exhibited an enhanced production of iNOS and TNF-alpha release. The increased macrophage activation activity in the presence of IFN-gamma also correlated with the restriction of the intracellular bacteria survival. Moreover, IFN-gamma also prevented cell fusion and multinucleated cell formation induced by B. pseudomallei, a phenomenon recently described by our group. Altogether, these results indicate that internalization of B. pseudomallei failed to trigger substantial macrophage activation, a phenomenon which could prolong their survival inside the phagocytic cells and facilitate a direct cell to cell spreading of B. pseudomallei to neighboring cells.  相似文献   

9.
Burkholderia pseudomallei is a major cause of bacterial septicemias in many parts of the world, particularly Thailand; the known geographic range of the organism appears to be enlarging as awareness of the organism and the disease it causes--melioidosis--increases. B. pseudomallei is intrinsically resistant to most antibiotics, and our knowledge of B. pseudomallei pathogenesis is lacking. Thus, the long-term objective of our research is to define at a molecular level the pathogenesis by combining genetic, immunologic, and biochemical approaches with animal model studies. Basic studies on B. pseudomallei pathogenesis are acutely needed to provide a knowledge base to rationally design new modes of therapy directed against this organism.  相似文献   

10.
Melioidosis is a potentially fatal disease caused by the bacterium, Burkholderia pseudomallei. The current study was carried out to determine the mechanisms involved in the development of protective immunity in a murine model of melioidosis. Following intravenous infection with B. pseudomallei, both C57BL/6 and BALB/c mice demonstrated delayed-type hypersensitivity responses and lymphocyte proliferation towards B. pseudomallei antigens, indicating the generation of B. pseudomallei-specific lymphocytes. Adoptive transfer of these lymphocytes to na?ve C57BL/6 mice was demonstrated by a delayed-type hypersensitivity response. Mice were not protected from a subsequent lethal challenge with a highly virulent strain of B. pseudomallei, suggesting that a single intravenous dose of the bacterium is insufficient to induce a protective adaptive immune response. Attempts to induce resistance in susceptible BALB/c mice used repetitive low-dose exposure to live B. pseudomallei. Immune responses and resistance following subcutaneous immunization with live B. pseudomallei were compared with exposure to heat-killed, culture filtrate and sonicated B. pseudomallei antigens. Compared to heat-killed B. pseudomallei, significant protection was generated in BALB/c mice following immunization with live bacteria. Our studies also demonstrate that the type of immune response generated in vivo is influenced by the antigenic preparation of B. pseudomallei used for immunization.  相似文献   

11.
A subtraction library of Burkholderia pseudomallei was constructed by subtractive hybridisation of B. pseudomallei genomic DNA with Burkholderia thailandensis genomic DNA. Two clones were found to have significant sequence similarity to insertion sequences which have previously not been found in B. pseudomallei (designated ISA and ISB); and two clones showed sequence similarity to different regions of Burkholderia cepacia IS407 that has recently been detected in B. pseudomallei. The former, though possibly non-functional, represents new transposable genetic elements of B. pseudomallei. All three sequences were found to be present in multi-copy in the genomes of a number of B. pseudomallei strains and in B. thailandensis, which are the first transposable elements identified in this species.  相似文献   

12.
The Minitek disc system was utilized for the differentiation of Pseudomonas pseudomallei, the causative agent of melioidosis, from Ps. cepacia. The system was simple to use, inexpensive, and furnished rapid, clear-cut test results after 4 h. This procedure is suitable for differentiating soil bacteria presumptively identified as Ps. pseudomallei, Ps. cepacia or flavobacteria, and for the rapid confirmation of the presumptive identification of either Ps. pseudomallei or Ps. cepacia obtained by commercial identification-kit systems in the clinical laboratory.  相似文献   

13.
Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B.pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B.pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B.pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B.pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence in situ hybridization and confocal laser scanning microscopy were performed to localize the bacteria in plants. Burkholderia pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B.pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B.pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B.pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally.  相似文献   

14.
Monoclonal antibodies were generated against whole cell lysate of Burkholderia pseudomallei. Two out of 6 monoclonal antibodies were found specific and exhibited high affinity against B. pseudomallei, one of which, was utilized to develop sandwich ELISA for detection of specific B. pseudomallei antigen. Immunoassays were found to be specific as no reaction was observed with closely related Burkholderia and Pseudomonas species. Blood samples from experimentally infected mice were found positive for isolation till 4 days post infection (DPI) and ELISA till 10 DPI. One out of 40 sick animal serum samples tested in Thailand was found positive by sandwich ELISA that was earlier confirmed by isolation of B. pseudomallei. The results indicate the potentiality of the assay for its applicability in specific diagnosis of septicaemic melioidosis.  相似文献   

15.
Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infection of humans and animals. The virulence of this pathogen is thought to depend on a number of secreted proteins, including the MprA metalloprotease. We observed that MprA is produced upon entry into the stationary phase, when the cell density is high, and this prompted us to study cell density-dependent regulation in B. pseudomallei. A search of the B. pseudomallei genome led to identification of a quorum-sensing system involving the LuxI-LuxR homologs PmlI-PmlR. PmlI directed the synthesis of an N-acylhomoserine lactone identified as N-decanoylhomoserine lactone. A B. pseudomallei pmlI mutant was significantly less virulent than the parental strain in a murine model of infection by the intraperitoneal, subcutaneous, and intranasal routes. Inactivation of pmlI resulted in overproduction of MprA at the onset of the stationary phase. A wild-type phenotype was restored following complementation with pmlI or addition of cell-free culture supernatant. In contrast, there was no significant difference between the virulence of a B. pseudomallei mprA mutant and the virulence of the wild-type strain. These results suggest that the PmlI-PmlR quorum-sensing system of B. pseudomallei is essential for full virulence in a mouse model and downregulates the production of MprA at a high cell density.  相似文献   

16.
We investigated a non-mammalian host model system for fitness in genetic screening for virulence-attenuating mutations in the potential biowarfare agents Burkholderia pseudomallei and Burkholderia mallei . We determined that B. pseudomallei is able to cause 'disease-like' symptoms and kill the nematode Caenorhabditis elegans . Analysis of killing in the surrogate disease model with B. pseudomallei mutants indicated that killing did not require lipopolysaccharide (LPS) O-antigen, aminoglycoside/macrolide efflux pumping, type II pathway-secreted exoenzymes or motility. Burkholderia thailandensis and some strains of Burkholderia cepacia also killed nematodes. Manipulation of the nematode host genotype suggests that the neuromuscular intoxication caused by both B. pseudomallei and B. thailandensis acts in part through a disruption of normal Ca2+ signal transduction. Both species produce a UV-sensitive, gamma-irradiation-resistant, limited diffusion, paralytic agent as part of their nematode pathogenic mechanism. The results of this investigation suggest that killing by B. pseudomallei is an active process in C. elegans , and that the C. elegans model might be useful for the identification of vertebrate animal virulence factors in B. pseudomallei .  相似文献   

17.
Melioidosis is a disease of humans caused by opportunistic infection with the soil and water bacterium Burkholderia pseudomallei. Melioidosis can manifest as an acute, overwhelming infection or as a chronic, recurrent infection. At present, it is not clear where B. pseudomallei resides in the mammalian host during the chronic, recurrent phase of infection. To address this question, we developed a mouse low-dose mucosal challenge model of chronic B. pseudomallei infection and investigated sites of bacterial persistence over 60 days. Sensitive culture techniques and selective media were used to quantitate bacterial burden in major organs, including the gastrointestinal (GI) tract. We found that the GI tract was the primary site of bacterial persistence during the chronic infection phase, and was the only site from which the organism could be consistently cultured during a 60-day infection period. The organism could be repeatedly recovered from all levels of the GI tract, and chronic infection was accompanied by sustained low-level fecal shedding. The stomach was identified as the primary site of GI colonization as determined by fluorescent in situ hybridization. Organisms in the stomach were associated with the gastric mucosal surface, and the propensity to colonize the gastric mucosa was observed with 4 different B. pseudomallei isolates. In contrast, B. pseudomallei organisms were present at low numbers within luminal contents in the small and large intestine and cecum relative to the stomach. Notably, inflammatory lesions were not detected in any GI tissue examined in chronically-infected mice. Only low-dose oral or intranasal inoculation led to GI colonization and development of chronic infection of the spleen and liver. Thus, we concluded that in a mouse model of melioidosis B. pseudomallei preferentially colonizes the stomach following oral inoculation, and that the chronically colonized GI tract likely serves as a reservoir for dissemination of infection to extra-intestinal sites.  相似文献   

18.
Melioidosis is a major cause of morbidity and mortality in Southeast Asia, where the causative organism (Burkholderia pseudomallei) is present in the soil. In the Lao People's Democratic Republic (Laos), B. pseudomallei is a significant cause of sepsis around the capital, Vientiane, and has been isolated in soil near the city, adjacent to the Mekong River. We explored whether B. pseudomallei occurs in Lao soil distant from the Mekong River, drawing three axes across northwest, northeast, and southern Laos to create nine sampling areas in six provinces. Within each sampling area, a random rice field site containing a grid of 100 sampling points each 5 m apart was selected. Soil was obtained from a depth of 30 cm and cultured for B. pseudomallei. Four of nine sites (44%) were positive for B. pseudomallei, including all three sites in Saravane Province, southern Laos. The highest isolation frequency was in east Saravane, where 94% of soil samples were B. pseudomallei positive with a geometric mean concentration of 464 CFU/g soil (95% confidence interval, 372 to 579 CFU/g soil; range, 25 to 10,850 CFU/g soil). At one site in northwest Laos (Luangnamtha), only one sample (1%) was positive for B. pseudomallei, at a concentration of 80 CFU/g soil. Therefore, B. pseudomallei occurs in Lao soils beyond the immediate vicinity of the Mekong River, alerting physicians to the likelihood of melioidosis in these areas. Further studies are needed to investigate potential climatic, soil, and biological determinants of this heterogeneity.  相似文献   

19.
The heat-treated whole cells, culture supernatants, and extracted endotoxin preparations of Pseudomonas pseudomallei were examined for endotoxin by the mouse body weight-decreasing (BWD) test. The experiments were conducted also with those of P. cepacia and P aeruginosa. Endotoxin was detected in all the samples of P. pseudomallei. Endotoxin of P. cepacia was detected in whole cells, but not in culture supernatant. The BWD activity of P. aeruginosa was 30 times as high as that of P. pseudomallei. This result was confirmed by the experiments with endotoxin preparations. In the limulus amebocyte lysate gelation (LAL) test, however, the endotoxin preparations of the two species showed the same level of activity.  相似文献   

20.
The strategy of the selection (life) of P. pseudomallei has been defined as C-competitiveness, combining the advantages of the limited (r and K) types of the ecological strategies of microorganisms and ensuring their good capacity of survival in soil biota. The self-regulation mechanisms of P. pseudomallei populations in the environment are determined by the type of their strategy of selection, which also determines the place of this species among other organisms inhabiting the soil. C-competitiveness of P. pseudomallei permits the realization of the self-support of its populations under changing conditions of their habitat, in particular in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号