首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The second generation antipsychotic (SGA) drugs are widely used in psychiatry due to their clinical efficacy and low incidence of neurological side-effects. However, many drugs in this class cause deleterious metabolic side-effects. Animal models accurately predict metabolic side-effects for SGAs with known clinical metabolic liability. We therefore used preclinical models to evaluate the metabolic side-effects of glucose intolerance and insulin resistance with the novel SGAs asenapine and iloperidone for the first time. Olanzapine was used as a comparator.

Methods

Adults female rats were treated with asenapine (0.01, 0.05, 0.1, 0.5, 1.0 mg/kg), iloperidone (0.03, 0.5, 1.0, 5.0, 10.0 mg/kg) or olanzapine (0.1, 0.5, 1.5, 5.0, 10.0 mg/kg) and subjected to the glucose tolerance test (GTT). Separate groups of rats were treated with asenapine (0.1 and 1.0 mg/kg), iloperidone (1.0 and 10 mg/kg) or olanzapine (1.5 and 15 mg/kg) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC).

Results

Asenapine showed no metabolic effects at any dose in either test. Iloperidone caused large and significant glucose intolerance with the three highest doses in the GTT, and insulin resistance with both doses in the HIEC. Olanzapine caused significant glucose intolerance with the three highest doses in the GTT, and insulin resistance with the higher dose in the HIEC.

Conclusions

In preclinical models, asenapine shows negligible metabolic liability. By contrast, iloperidone exhibits substantial metabolic liability, comparable to olanzapine. These results emphasize the need for appropriate metabolic testing in patients treated with novel SGAs where current clinical data do not exist.  相似文献   

2.
Tardive dyskinesia (TD) risk with D2/serotonin receptor antagonists or D2 receptor partial agonists (second‐generation antipsychotics, SGAs) is considered significantly lower than with D2 antagonists (first‐generation antipsychotics, FGAs). As some reports questioned this notion, we meta‐analyzed randomized controlled studies (RCTs) to estimate the risk ratio (RR) and annualized rate ratio (RaR) of TD comparing SGAs vs. FGAs and SGAs vs. SGAs. Additionally, we calculated raw and annualized pooled TD rates for each antipsychotic. Data from 57 head‐to‐head RCTs, including 32 FGA and 86 SGA arms, were meta‐analyzed, yielding 32 FGA‐SGA pairs and 35 SGA‐SGA pairs. The annualized TD incidence across FGA arms was 6.5% (95% CI: 5.3‐7.8%) vs. 2.6% (95% CI: 2.0‐3.1%) across SGA arms. TD risk and annualized rates were lower with SGAs vs. FGAs (RR=0.47, 95% CI: 0.39‐0.57, p<0.0001, k=28; RaR=0.35, 95% CI: 0.28‐0.45, p<0.0001, number‐needed‐to‐treat, NNT=20). Meta‐regression showed no FGA dose effect on FGA‐SGA comparisons (Z=?1.03, p=0.30). FGA‐SGA TD RaRs differed by SGA comparator (Q=21.8, df=7, p=0.003), with a significant advantage of olanzapine and aripiprazole over other non‐clozapine SGAs in exploratory pairwise comparisons. SGA‐SGA comparisons confirmed the olanzapine advantage vs. non‐clozapine SGAs (RaR=0.66, 95% CI: 0.49‐0.88, p=0.006, k=17, NNT=100). This meta‐analysis confirms a clinically meaningfully lower TD risk with SGAs vs. FGAs, which is not driven by high dose FGA comparators, and documents significant differences with respect to this risk between individual SGAs.  相似文献   

3.
Roux-en-y gastric bypass (RYGB) surgery rapidly improves glucose tolerance and reverses insulin resistance in obese patients. It has been hypothesized that this effect is mediated by the diversion of nutrients from the proximal small intestine. We utilized duodenal-jejunal bypass (DJB) as a modification of gastric bypass to determine the effect of nutrient diversion from the foregut without gastric restriction on insulin resistance in obese rats. The effects of DJB or Sham surgery on glucose homeostasis were determined in both high-fat-fed Long-Evans and Wistar rats. Body weight and food intake were measured weekly postoperatively, and body composition was monitored before and after surgery. Glucose tolerance was tested before and as early as 1 month postoperation; additionally, in Wistar rats, insulin sensitivity was determined by a hyperinsulinemic-euglycemic clamp (HIEC). DJB did not affect body weight, body composition, glucose tolerance, or insulin concentrations over the period of the study. The average glucose infusion rate (GIR) during the HIEC was 6.2 ± 1.16 mg/kg/min for Sham rats compared to 7.2 ± 1.71 mg/kg/min for DJB rats (P = 0.62), and neither endogenous glucose production (EGP; P = 0.81) nor glucose utilization (glucose disappearance (R(d)), P = 0.59) differed between DJB and Sham rats. DJB does not affect insulin resistance induced by a high-fat diet in Long-Evans and Wistar rats. These data suggest that duodenal bypass alone is an insufficient mechanism to alter insulin sensitivity independent of weight loss in obese, nondiabetic rodents.  相似文献   

4.
Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 μg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin.  相似文献   

5.
Patients with cirrhosis of the liver often have insulin resistance and elevated circulating growth hormone levels. This study was undertaken (a) to evaluate glucose intolerance, insulin resistance and abnormal growth hormone secretion and (b) to determine if GH suppression improves insulin resistance. Glucose tolerance tests (GTT), intravenous insulin tolerance tests (IVITT), arginine stimulation tests (AST) and glucose clamp studies before and during GH suppression with somatostatin were performed in a group of patients with alcohol-induced liver cirrhosis. During GTT cirrhotic subjects had a 2-hour plasma glucose of 200 +/- 9.8 ng/dl (N = 14) compared to 128 +/- 8.0 ng/dl in normal controls (N = 15), P less than 0.001. Basal GH was elevated in cirrhotic patients and in response to arginine stimulation reached a peak of 17.0 +/- 5.4 ng/ml (N = 7), compared to a peak of 11.3 +/- 1.8 ng/ml in 5 normal controls (P = NS). During IVITT patients with cirrhosis had a glucose nadir of 60.0 +/- 4.0 mg/dl (N = 9), compared to 29.0 +/- 7.0 mg/dl in controls (N = 5), P less than 0.001. Peak GH levels during IVITT were not significantly different in cirrhotics and controls. Glucose utilization rates in 4 patients with cirrhosis of the liver before somatostatin mediated GH suppression was 3.1 +/- 0.5 mg/kg/min and 6.5 +/- 1.5 mg/kg/min during somatostatin infusion, P less than 0.025. We conclude that patients with alcohol induced cirrhosis have sustained GH elevations resulting in insulin resistance which improves after GH suppression.  相似文献   

6.
The atypical antipsychotic drug olanzapine induces weight gain and defects in glucose metabolism in patients. Using a rat model we investigated the effects of acute and long term olanzapine treatment on weight gain, food preference and glucose metabolism. Olanzapine treated rats fed a chow diet grew more slowly than vehicle controls but olanzapine treated animals fed a high fat/sugar diet grew faster than control animals on the same diet. These changes in weight were paralleled by changes in fat mass. Olanzapine also induced a strong preference for a high fat/high sugar diet. Acute exposure to olanzapine rapidly induced severe impairments of glucose tolerance and increased insulin secretion but did not impair insulin tolerance. These results indicate the defect in glucose metabolism induced by acute olanzapine treatment was most likely due to increased hepatic glucose output associated with a reduction in active GLP-1 levels and correspondingly high glucagon levels.  相似文献   

7.
Second‐generation antipsychotics (SGAs) are recommended for maintenance treatment in schizophrenia. However, comparative long‐term effectiveness among SGAs is unclear. Here we provide a systematic review and meta‐analysis of randomized trials lasting ≥?6 months comparing SGAs head‐to‐head in schizophrenia and related disorders. The primary outcome was all‐cause discontinuation. Secondary outcomes included efficacy and tolerability, i.e., psychopathology, inefficacy‐related and intolerability‐related discontinuation, relapse, hospitalization, remission, functioning, quality of life, and adverse events. Pooled risk ratio and standardized mean difference were calculated using random‐effects models. Across 59 studies (N=45,787), lasting 47.4±32.1 weeks (range 24‐186), no consistent superiority of any SGA emerged across efficacy and tolerability outcomes. Regarding all‐cause discontinuation, clozapine, olanzapine and risperidone were significantly (p<0.05) superior to several other SGAs, while quetiapine was inferior to several other SGAs. As to psychopathology, clozapine and olanzapine were superior to several other SGAs, while quetiapine and ziprasidone were inferior to several other SGAs. Data for other efficacy outcomes were sparse. Regarding intolerability‐related discontinuation, risperidone was superior and clozapine was inferior to several other SGAs. Concerning weight gain, olanzapine was worse than all other compared non‐clozapine SGAs, and risperidone was significantly worse than several other SGAs. As to prolactin increase, risperidone and amisulpride were significantly worse than several other SGAs. Regarding parkinsonism, olanzapine was superior to risperidone, without significant differences pertaining to akathisia. Concerning sedation and somnolence, clozapine and quetiapine were significantly worse than some other SGAs. In summary, different long‐term SGA efficacy and tolerability patterns emerged. The long‐term risk‐benefit profiles of specific SGAs need to be tailored to individual patients to optimize maintenance treatment outcomes.  相似文献   

8.
Steroidal glycoalkaloids (SGAs) are produced following the general steroid biosynthesis pathway, starting from acetyl-coenzyme A and followed by the intermediates mevalonic acid, squalene, cycloartenol, and cholesterol. α-Chaconine and α-solanine are the main SGAs of the cultivated potato (Solanum tuberosum), whereas many other SGAs are known in the wild potato species. Low concentrations of SGAs improve the taste of potato, but concentrations greater than 200 mg/kg can have toxic effects on animals and humans. SGAs have antimicrobial activity and confer resistance to some insects, but many such pests of potato are not greatly affected. Certain environmental conditions and wounding enhance SGA accumulation in tubers in the field and storage. Low production of SGAs is a dominant character inherited in a relatively simple manner and can be selected for in potato-breeding programs, whereas the use of wild potato germplasm tends to increase the SGA accumulation in the breeding lines. Further efforts are likely to be directed toward the reduction of the SGA content in the edible potato products through breeding and biotechnological methodologies, whereas potato genotypes with high SGA production may be developed for use in the pharmaceutical industry.  相似文献   

9.
Objective: To characterize a model of atypical antipsychotic drug‐induced obesity and evaluate its mechanism. Research Methods and Procedures: Chronically, olanzapine or clozapine was self‐administered via cookie dough to rodents (Sprague‐Dawley or Wistar rats; C57Bl/6J or A/J mice). Chronic studies measured food intake, body weight, adiponectin, active ghrelin, leptin, insulin, tissue wet weights, glucose, clinical chemistry endpoints, and brain dopaminergic D2 receptor density. Acute studies examined food intake, ghrelin, leptin, and glucose tolerance. Results: Olanzapine (1 to 8 mg/kg), but not clozapine, increased body weight in female rats only. Weight changes were detectable within 2 to 3 days and were associated with hyperphagia starting ~24 hours after the first dose. Chronic administration (12 to 29 days) led to adiposity, hyperleptinemia, and mild insulin resistance; no lipid abnormalities or changes in D2 receptor density were observed. Topiramate, which has reversed weight gain from atypical antipsychotics in humans, attenuated weight gain in rats. Acutely, olanzapine, but not clozapine, lowered plasma glucose and leptin. Increases in glucose, insulin, and leptin following a glucose challenge were also blunted. Discussion: A model of olanzapine‐induced obesity was characterized which shares characteristics of patients with atypical antipsychotic drug‐induced obesity; these characteristics include hyperphagia, hyperleptinemia, insulin resistance, and weight gain attenuation by topiramate. This model may be a useful and inexpensive model of uncomplicated obesity amenable to rapid screening of weight loss drugs. Olanzapine‐induced weight gain may be secondary to hyperphagia associated with acute lowering of plasma glucose and leptin, as well as the inability to increase plasma glucose and leptin following a glucose challenge.  相似文献   

10.
11.
To investigate the enteroinsular axis (EIA) in equines oral (oGTT) and intravenous (i.v.GTT) glucose tolerance tests (5.6 and 1 mmol glucose/kg BW, respectively) were performed with healthy, normal weight large horses and Shetland ponies. Plasma was analysed for concentrations of glucose, glucose-dependent insulinotropic polypeptide (GIP) and insulin. In all equines plasma GIP concentrations only increased significantly when glucose was administered orally. The insulin glucose ratio (IGR) was significantly higher during the oGTT than during the i.v.GTT in both races. Basal plasma glucose levels were significantly higher in large horses than in ponies in both experiments. During the oGTT maximum glucose values were significantly higher in ponies. Ponies tended to a higher insulin secretion but the IGRs were identical in both races after oral and intravenous glucose administration. One clinically inconspicuous pony showed hyperinsulinaemia and, in case of the oGTT, insulin resistance, glucose intolerance, and GIP hypersecretion. The results of this study indicate the existence of an EIA in equines due to the higher IGRs during the oGTT. Furthermore, the similarity of plasma GIP levels and IGRs in ponies and large horses suggest a comparable activity of the EIA in both races. Regarding the elevated plasma GIP concentrations of the insulin resistant pony the EIA appears to participate in equine hyperinsulinaemia.  相似文献   

12.
Linagliptin (TRADJENTA?) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3-4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67-89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (-16.5% to -20.3%; P<0.01) or 30 mg/kg/day (-14.5% to -26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic-hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity.  相似文献   

13.
Olanzapine is known to be advantageous with respect to outcome and drug compliance in patients with schizophrenia. However, olanzapine has adverse effects, including a higher incidence of weight gain and metabolic disturbances, when compared with those of other antipsychotic agents. The mechanisms underlying these adverse events remain obscure. Female rats were orally administered olanzapine (2 mg/kg) or vehicle once a day for 2 weeks to ascertain if hypothalamic AMP-activated protein kinase (AMPK) mediates olanzapine-induced weight gain and hyperphagia. Body weight and food intake in each rat were evaluated every day and every two days, respectively. After the termination of drug treatment, we measured the protein levels of AMPK and phosphorylated AMPK in the hypothalamus using western blot analyses. Olanzapine significantly increased body weight and food intake. The phosphorylation levels of AMPK were significantly elevated by olanzapine. These results suggest that activation of hypothalamic AMPK may mediate hyperphagia and weight gain induced by chronic treatment with olanzapine.  相似文献   

14.
Previous reports showed that recombinant fragments of adiponectin (adipo) displayed pharmacological effects when injected into rodents, but the relevance of these observations to the physiological function of adipo is unclear. We generated Adipo(-/-) mice by gene targeting. Adipo(-/-) mice are fertile with normal body and fat pad weights. Plasma glucose and insulin levels of Adipo(-/-) and Adipo(+/+) mice are similar under fasting conditions and during an intraperitoneal glucose tolerance test (GTT). Insulin tolerance test (ITT) also produces similar plasma glucose and insulin levels in the two groups of mice. Hyperinsulinemic-euglycemic clamp analysis showed that Adipo(-/-) and Adipo(+/+) mice have similar glucose infusion rates to maintain a similar serum glucose. High-fat diet feeding for 7 months led to similar weight gain and similar GTT and ITT responses. We next measured beta-oxidation and found it to be significantly increased in muscle and liver of Adipo(-/-) mice. In conclusion, our study indicates that absence of adipo causes increased beta-oxidation but does not cause glucose intolerance or insulin resistance in mice.  相似文献   

15.
Chronic inflammation characterized by T cell and macrophage infiltration of visceral adipose tissue (VAT) is a hallmark of obesity-associated insulin resistance and glucose intolerance. Here we show a fundamental pathogenic role for B cells in the development of these metabolic abnormalities. B cells accumulate in VAT in diet-induced obese (DIO) mice, and DIO mice lacking B cells are protected from disease despite weight gain. B cell effects on glucose metabolism are mechanistically linked to the activation of proinflammatory macrophages and T cells and to the production of pathogenic IgG antibodies. Treatment with a B cell-depleting CD20 antibody attenuates disease, whereas transfer of IgG from DIO mice rapidly induces insulin resistance and glucose intolerance. Moreover, insulin resistance in obese humans is associated with a unique profile of IgG autoantibodies. These results establish the importance of B cells and adaptive immunity in insulin resistance and suggest new diagnostic and therapeutic modalities for managing the disease.  相似文献   

16.
Rats offered chow, lard, and 30% sucrose solution (choice) rapidly become obese. We tested metabolic disturbances in rats offered choice, chow+lard, or chow+30% sucrose solution [chow+liquid sucrose (LS)] and compared them with rats fed a composite 60% kcal fat, 7% sucrose diet [high-fat diet (HFD)], or a 10% kcal fat, 35% sucrose diet [low-fat diet (LFD)]. Choice rats had the highest energy intake, but HFD rats gained the most weight. After 23 days carcass fat was the same for choice, HFD, chow+lard, and chow+LS groups. Glucose clearance was the same for all groups during an intraperitoneal glucose tolerance test (GTT) on day 12, but fasting insulin was increased in choice, LFD fed, and chow+LS rats. By contrast, only choice and chow+LS rats were resistant to an intraperitoneal injection of 2 mg leptin/kg on day 17. In experiment 2 choice rats were insulin insensitive during an intraperitoneal GTT, but this was corrected in an oral GTT due to GLP-1 release. UCP-1 protein was increased in brown fat and inguinal white fat in choice rats, and this was associated with a significant increase in energy expenditure of choice rats during the dark period whether expenditure was expressed on a per animal or a metabolic body size basis. The increase in expenditure obviously was not great enough to prevent development of obesity. Further studies are required to determine the mechanistic basis of the rapid onset of leptin resistance in choice rats and how consumption of sucrose solution drives this process.  相似文献   

17.
The study has evaluated the effect of diabetes associated hyperglycaemia on nociception and antinociception induced by morphine, buprenorphine and pentazocine in female albino rats. Rats were allocated into 3 groups of 20 each--group I consisted of control having normal blood glucose levels (BGLs), group II consisted of streptozotocin-induced diabetics (STZ-D) having hyperglycaemia and group III consisted of diabetic rats controlled with insulin treatment. Immediately before and 15, 30 min, 1, 2 and 3 hr after injection with test drugs, rats were subjected to a thermal noxious stimulus using tail withdrawal from hot water and tail-flick latencies (TFL) so generated were recorded. Similarly, before and 30, 45 min and 1 hr after injection with drugs rats were subjected to abdominal writhing with hypertonic saline and number of writhes were counted per 90 sec. In STZ-D animals (BGLs 317.95 +/- 3.8 mg/dl) a decreased TFL with an increase in the number of writhes compared to control and diabetes controlled with insulin treatment was observed. Percent maximum possible effect of morphine (5 mg/kg, s.c.) and buprenorphine (2 mg/kg, s.c.) was significantly lower when compared to control as well as STZ-D controlled with insulin treatment groups. Similarly percent protection from writhing of morphine (0.05 mg/kg, s.c.) and buprenorphine (0.01 mg/kg, s.c.) was significantly less in comparison to control and STZ-D controlled with insulin treatment group. However, percent maximum possible effect of pentazocine (20 mg/kg, s.c.) and percent protection from writhing of pentazocine (1 mg/kg, s.c.) was significantly high in STZ-D rats when compared to control and STZ-D rats controlled with insulin treatment groups. The results suggest that both mu and kappa--opioid receptors may be modulated by blood glucose levels possibly involving cellular energetics mediated change in potassium (KATP) channels in females rats, albeit differentially.  相似文献   

18.
The objective was to compare the ability of the rapid insulin sensitivity test (RIST), the hyperinsulinemic euglycemic clamp (HIEC), and the insulin tolerance test (ITT) to detect hepatic insulin sensitizing substance (HISS) dependent insulin action. HISS action was augmented by feeding and inhibited by fasting, blockade of hepatic nitric oxide synthase, or blockade of hepatic muscarinic cholinergic receptors. A significant correlation was found between the RIST index and ITT nadir (r2 = 0.84) but not between the glucose infusion rate of the HIEC and RIST index. There was, however, a relationship between the RIST index and the initial response during the HIEC. Use of the HIEC resulted in HISS-dependent insulin resistance in both conscious and anesthetized animals. We concluded that since the RIST and ITT were comparable in quantifying both HISS-dependent and HISS-independent insulin action, the RIST was validated against this standard. The observation that the HIEC is capable of detecting HISS action in the first rising slope of the test but not at the end of the test and that HISS release is fully blocked after the conclusion of the HIEC raises concerns about the use of the commonly used HIEC.  相似文献   

19.
20.
Irwin N  Hunter K  Flatt PR 《Peptides》2008,29(6):1036-1041
GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P < 0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P < 0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P < 0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P < 0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号