首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histone acetylation in gene regulation.   总被引:3,自引:0,他引:3  
Genetic information is packaged in the highly dynamic nucleoprotein structure called chromatin. Many biological processes are regulated via post-translational modifications of key proteins. Acetylation of lysine residues at the N-terminal histone tails is one of the most studied covalent modifications influencing gene regulation in eukaryotic cells. This review focuses on the role of enzymes involved in controlling both histone and non-histone proteins acetylation levels in the cell, with particular emphasis on their effects on cancer.  相似文献   

2.
3.
真核生物核小体组蛋白修饰引起染色质重塑(Chromatin remodeling)是表观遗传的重要调控机制.乙酰化修饰(Acetylation modification)是其中一种重要的方式.组蛋白乙酰化修饰位点集中在各种组蛋白N末端赖氨酸残基上.细胞内存在功能拮抗的多种乙酰基转移酶和去乙酰化酶,二者相互竞争,共同调节组蛋白的乙酰化状态,通过影响核小体结构的致密性,并在多种效应分子的参与下,实现对基因的表达调控.以真核模式生物酿酒酵母(Saccharomyces cerevisiae)为对象,综述乙酰基转移酶和去乙酰化酶的种类、作用特点以及其基因调控的分子机制等方面的最新研究进展.  相似文献   

4.
5.
6.
Evasion of apoptosis represents a key mechanism leading to treatment resistance of human cancers. Abnormal regulation of chromatin remodeling has been implied in tumorigenesis as well as treatment resistance. Acetylation of histones represents one of the key posttranslational modifications that contribute to the regulation of chromatin remodeling. Histone acetylation is governed by the balance between enzymes that put acetyl groups on histone tails or, alternatively, remove them. Since a disturbed regulation of histone acetylation plays an important role in cancer formation and progression, a variety of histone deacetylase (HDAC) inhibitors have been developed in recent years to target aberrant HDAC activity. HDAC inhibitors also represent a promising strategy to lower the threshold of cancer cells for apoptosis induction. For example, synergistic induction of apoptosis has been documented for the concomitant use of HDAC inhibitors together with the death receptor ligand TRAIL in a panel of human cancers. Understanding the molecular mechanism that mediates this synergistic drug interaction will be critical to further optimize this approach in order to successfully translate it into a clinical setting.  相似文献   

7.
The histone-modifying enzymes that catalyze reversible lysine acetylation and methylation are central to the epigenetic regulation of chromatin remodeling. From the early discovery of histone deacetylase inhibitors to the more recent identification of histone demethylase blockers, chemical approaches offer increasingly sophisticated tools for the investigation of the structure and function of these lysine-modifying enzymes. This review summarizes progress to date on compounds identified from screens or by design that can modulate the activity of classical histone deacetylases, sirtuins, histone acetyltransferases, histone methyltransferases and histone demethylases. We highlight applications of compounds to mechanistic and functional studies involving these enzymes and discuss future challenges regarding target specificity and general utility.  相似文献   

8.
9.
Regulation of intermediary metabolism by protein acetylation   总被引:1,自引:0,他引:1  
  相似文献   

10.
蛋白质的赖氨酸乙酰化修饰可以定义为在蛋白质的赖氨酸残基上添加或移除一个乙酰基团,这个过程是由乙酰化酶和脱乙酰酶调控的.真核生物细胞核内组蛋白和转录因子的可逆乙酰化修饰对基因表达调控的机制早已研究得比较清楚.1996年以来,一些独立的研究也陆续发现,参与到其他生命活动中的蛋白质存在着乙酰化修饰情况,表明乙酰化可能在生命活动中发挥着广泛的调节作用.然而直到2009年,高通量的蛋白质质谱分析技术才使得在蛋白质组水平上研究乙酰化修饰成为可能,并发现蛋白质乙酰化普遍存在.学者们发现,乙酰化修饰是一个在细胞核或细胞质的亚细胞器内广泛存在的翻译后修饰调控机制,可能参与了染色体重塑、细胞周期调控、细胞骨架的大分子运输、新陈代谢等多种生命活动.本文详细总结代谢酶的乙酰化修饰对新陈代谢调控的关键作用,并说明代谢酶的乙酰化修饰是一个从原核生物到真核生物进化上高度保守的调控机制.  相似文献   

11.
12.
13.
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.  相似文献   

14.
15.
16.
17.
Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser(10)) facilitates acetylation of lysine 14 (Lys(14)) by Gcn5 in vitro (, ). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser(10) in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser(10) to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys(9)) in vivo. Acetylation of Lys(9) is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser(10) in H3 and the concomitant loss of Lys(9) acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser(10) mutations that are reminiscent of delays in G(2)/M progression caused by combined loss of GCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys(9) and Lys(14), and they highlight the importance of these histone modifications to normal cell functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号