首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Letter: functional form of RNA synthesis termination factor rho   总被引:1,自引:0,他引:1  
The ability of rho factor to effect in vitro termination of RNA synthesis requires the association of rho monomers into an oligomer consisting of at least four subunits. It was found that (1) rho factor activity has a sigmoidal dependence upon concentration, and (2) rho factor's sedimentation coefficient decreases with decreasing concentration, proceeding through 8.5 S (tetramer), 6.2 S (dimer) and finally 4.3 S (monomer) forms as the concentration approaches the apparent equilibrium binding constant. Rho factor may function at specific sites in the DNA template through the co-operative binding of subunits into an oligomer which surrounds the DNA helix.  相似文献   

3.
4.
5.
Autogenous regulation of transcription termination factor Rho   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
N-(7-Dimethylamino-4-methylcoumarynyl)maleimide (DACM), a fluorescent reagent for sulfhydryl groups, was employed to determine the functionally essential cysteine residues in aspartase from Escherichia coli. Analysis of the tryptic peptides containing DACM-labeled residues by reverse phase HPLC revealed that Cys-140 and Cys-430 were selectively modified, among 11 residues whose loci were recently determined by a DNA sequencing study (Takagi, J.S., et al. (1985) Nucl. Acids Res. 13, 2063-2074). When the modification was carried out in the presence of Mg2+ and L-aspartate, the enzyme activity remained unchanged and no cysteine residue was modified. This suggests that two cysteine residues are located at the L-aspartate binding site and that at least one of them is involved in the catalytic reaction.  相似文献   

18.
19.
We have determined the nucleotide sequences of three mutant rho genes encoding hyperfunctional rho proteins (rho S) together with their parent allele, rho-ts702. These mutant rho factors contain the following amino acid changes as deduced from their sequences: (1) the thermo-labile mutant, rho-ts702, has Thr304 substituting for Ala; (2) rho S-77 and rho S-81, which are selectively altered in the primary polynucleotide binding site, share an identical mutation, Leu3----Phe; (3) rho S-82, which is altered in both the primary and secondary polynucleotide binding sites, carries three amino acid substitutions together, Leu3----Phe, Asp156----Asn and Thr323----Ile. Dissection and functional characterization of each mutation in rho S-82 have revealed that Ile323 alone is responsible for alterations in both the secondary RNA interaction and the terminator selectivity observed with the original mutant, rho S-82. Taken together, these results not only confirm our proposal in the accompanying paper that the primary and secondary RNA binding sites differently contribute in determining the overall efficiency and site-specificity of termination, respectively, but also support the possibility that these binding sites exist as structurally distinct domains in rho protein. In contrast, Asn156 was shown to cause decreased termination efficiency, though it had no influence on RNA interactions. Thus, this amino acid residue appears to be associated with still another rate-determining step of termination, for instance, interactions between rho and RNA polymerase. On the basis of Chou-Fasman secondary structure predictions as well as amino acid sequence comparison with F1-ATPase, we discuss how the proposed domains are structurally and functionally related to the putative ATPase reactive center of rho protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号