首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the nucleotide substitution model for molecular evolution, a major task in the exploration of an evolutionary process is to estimate the substitution number per site of a protein or DNA sequence. The usual estimators are based on the observation of the difference proportion of the two nucleotide sequences. However, a more objective approach is to report a confidence interval with precision rather than only providing point estimators. The conventional confidence intervals used in the literature for the substitution number are constructed by the normal approximation. The performance and construction of confidence intervals for evolutionary models have not been much investigated in the literature. In this article, the performance of these conventional confidence intervals for one-parameter and two-parameter models are explored. Results show that the coverage probabilities of these intervals are unsatisfactory when the true substitution number is small. Since the substitution number may be small in many situations for an evolutionary process, the conventional confidence interval cannot provide accurate information for these cases. Improved confidence intervals for the one-parameter model with desirable coverage probability are proposed in this article. A numerical calculation shows the substantial improvement of the new confidence intervals over the conventional confidence intervals.  相似文献   

2.
Two methods are commonly employed for evaluating the extent of the uncertainty of evolutionary distances between sequences: either some estimator of the variance of the distance estimator, or the bootstrap method. However, both approaches can be misleading, particularly when the evolutionary distance is small. We propose using another statistical method which does not have the same defect: interval estimation. We show how confidence intervals may be constructed for the Jukes and Cantor (1969) and Kimura two-parameter (1980) estimators. We compare the exact confidence intervals thus obtained with the approximate intervals derived by the two previous methods, using artificial and biological data. The results show that the usual methods clearly underestimate the variability when the substitution rate is low and when sequences are short. Moreover, our analysis suggests that similar results may be expected for other evolutionary distance estimators.   相似文献   

3.
We consider models of nucleotidic substitution processes where the rate of substitution at a given site depends on the state of the neighbours of the site. We first estimate the time elapsed between an ancestral sequence at stationarity and a present sequence. Second, assuming that two sequences are issued from a common ancestral sequence at stationarity, we estimate the time since divergence. In the simplest non-trivial case of a Jukes-Cantor model with CpG influence, we provide and justify mathematically consistent estimators in these two settings. We also provide asymptotic confidence intervals, valid for nucleotidic sequences of finite length, and we compute explicit formulas for the estimators and for their confidence intervals. In the general case of an RN model with YpR influence, we extend these results under a proviso, namely that the equation defining the estimator has a unique solution.  相似文献   

4.
It is frequently true that molecular sequences do not evolve in a strictly clocklike manner. Instead, substitution rate may vary for a number of reasons, including changes in selection pressure and effective population size, as well as changes in mean generation time. Here we present two new methods for estimating stepwise changes in substitution rates when serially sampled molecular sequences are available. These methods are based on multiple rates with dated tips (MRDT) models and allow different rates to be estimated for different intervals of time. These intervals may correspond to the sampling intervals or to a priori--defined intervals that are not coincident with the times the serial samples are obtained. Two methods for obtaining estimates of multiple rates are described. The first is an extension of the phylogeny-based maximum-likelihood estimation procedure introduced by Rambaut. The second is a new parameterization of the pairwise distance least-squares procedure used by Drummond and Rodrigo. The utility of these methods is demonstrated on a genealogy of HIV sequences obtained at five different sampling times from a single patient over a period of 34 months.  相似文献   

5.
In population genetics, under a neutral Wright-Fisher model, the scaling parameter straight theta=4Nmu represents twice the average number of new mutants per generation. The effective population size is N and mu is the mutation rate per sequence per generation. Watterson proposed a consistent estimator of this parameter based on the number of segregating sites in a sample of nucleotide sequences. We study the distribution of the Watterson estimator. Enlarging the size of the sample, we asymptotically set a Central Limit Theorem for the Watterson estimator. This exhibits asymptotic normality with a slow rate of convergence. We then prove the asymptotic efficiency of this estimator. In the second part, we illustrate the slow rate of convergence found in the Central Limit Theorem. To this end, by studying the confidence intervals, we show that the asymptotic Gaussian distribution is not a good approximation for the Watterson estimator.  相似文献   

6.
This article proposes a novel approach to statistical alignment of nucleotide sequences by introducing a context dependent structure on the substitution process in the underlying evolutionary model. We propose to estimate alignments and context dependent mutation rates relying on the observation of two homologous sequences. The procedure is based on a generalized pair-hidden Markov structure, where conditional on the alignment path, the nucleotide sequences follow a Markov distribution. We use a stochastic approximation expectation maximization (saem) algorithm to give accurate estimators of parameters and alignments. We provide results both on simulated data and vertebrate genomes, which are known to have a high mutation rate from CG dinucleotide. In particular, we establish that the method improves the accuracy of the alignment of a human pseudogene and its functional gene.  相似文献   

7.
Most of the sophisticated methods to estimate evolutionary divergence between DNA sequences assume that the two sequences have evolved with the same pattern of nucleotide substitution after their divergence from their most recent common ancestor (homogeneity assumption). If this assumption is violated, the evolutionary distance estimated will be biased, which may result in biased estimates of divergence times and substitution rates, and may lead to erroneous branching patterns in the inferred phylogenies. Here we present a simple modification for existing distance estimation methods to relax the assumption of the substitution pattern homogeneity among lineages when analyzing DNA and protein sequences. Results from computer simulations and empirical data analyses for human and mouse genes are presented to demonstrate that the proposed modification reduces the estimation bias considerably and that the modified method performs much better than the LogDet methods, which do not require the homogeneity assumption in estimating the number of substitutions per site. We also discuss the relationship of the substitution and mutation rate estimates when the substitution pattern is not the same in the lineages leading to the two sequences compared.  相似文献   

8.
The choice of an "optimal" mathematical model for computing evolutionary distances from real sequences is not currently supported by easy-to-use software applicable to large data sets, and an investigator frequently selects one of the simplest models available. Here we study properties of the observed proportion of differences (p- distance) between sequences as an estimator of evolutionary distance for tree-making. We show that p-distances allow for consistent tree- making with any of the popular methods working with evolutionary distances if evolution of sequences obeys a "molecular clock" (more precisely, if it follows a stationary time-reversible Markov model of nucleotide substitution). Next, we show that p-distances seem to be efficient in recovering the correct tree topology under a "molecular clock," but produce "statistically supported" wrong trees when substitutions rates vary among evolutionary lineages. Finally, we outline a practical approach for selecting an "optimal" model of nucleotide substitution in a real data analysis, and obtain a crude estimate of a "prior" distribution of the expected tree branch lengths under the Jukes-Cantor model. We conclude that the use of a model that is obviously oversimplified is inadvisable unless it is justified by a preliminary analysis of the real sequences.   相似文献   

9.
Models of amino acid substitution were developed and compared using maximum likelihood. Two kinds of models are considered. "Empirical" models do not explicitly consider factors that shape protein evolution, but attempt to summarize the substitution pattern from large quantities of real data. "Mechanistic" models are formulated at the codon level and separate mutational biases at the nucleotide level from selective constraints at the amino acid level. They account for features of sequence evolution, such as transition-transversion bias and base or codon frequency biases, and make use of physicochemical distances between amino acids to specify nonsynonymous substitution rates. A general approach is presented that transforms a Markov model of codon substitution into a model of amino acid replacement. Protein sequences from the entire mitochondrial genomes of 20 mammalian species were analyzed using different models. The mechanistic models were found to fit the data better than empirical models derived from large databases. Both the mutational distance between amino acids (determined by the genetic code and mutational biases such as the transition-transversion bias) and the physicochemical distance are found to have strong effects on amino acid substitution rates. A significant proportion of amino acid substitutions appeared to have involved more than one codon position, indicating that nucleotide substitutions at neighboring sites may be correlated. Rates of amino acid substitution were found to be highly variable among sites.   相似文献   

10.
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on the use of fixed amino acid models in which all of the potentially free parameters are fixed to values estimated from a large number of sequences. Often, these fixed amino acid models are specific to a gene or taxonomic group (e.g. the Mtmam model, which has parameters that are specific to mammalian mitochondrial gene sequences). Although the fixed amino acid models succeed in reducing the number of free parameters to be estimated--indeed, they reduce the number of free parameters from approximately 200 to 0--it is possible that none of the currently available fixed amino acid models is appropriate for a specific alignment. Here, we present four approaches to the analysis of amino acid sequences. First, we explore the use of a general time reversible model of amino acid substitution using a Dirichlet prior probability distribution on the 190 exchangeability parameters. Second, we then explore the behaviour of prior probability distributions that are'centred' on the rates specified by the fixed amino acid model. Third, we consider a mixture of fixed amino acid models. Finally, we consider constraints on the exchangeability parameters as partitions,similar to how nucleotide substitution models are specified, and place a Dirichlet process prior model on all the possible partitioning schemes.  相似文献   

11.
Publication bias is a major concern in conducting systematic reviews and meta-analyses. Various sensitivity analysis or bias-correction methods have been developed based on selection models, and they have some advantages over the widely used trim-and-fill bias-correction method. However, likelihood methods based on selection models may have difficulty in obtaining precise estimates and reasonable confidence intervals, or require a rather complicated sensitivity analysis process. Herein, we develop a simple publication bias adjustment method by utilizing the information on conducted but still unpublished trials from clinical trial registries. We introduce an estimating equation for parameter estimation in the selection function by regarding the publication bias issue as a missing data problem under the missing not at random assumption. With the estimated selection function, we introduce the inverse probability weighting (IPW) method to estimate the overall mean across studies. Furthermore, the IPW versions of heterogeneity measures such as the between-study variance and the I2 measure are proposed. We propose methods to construct confidence intervals based on asymptotic normal approximation as well as on parametric bootstrap. Through numerical experiments, we observed that the estimators successfully eliminated bias, and the confidence intervals had empirical coverage probabilities close to the nominal level. On the other hand, the confidence interval based on asymptotic normal approximation is much wider in some scenarios than the bootstrap confidence interval. Therefore, the latter is recommended for practical use.  相似文献   

12.

Background  

Neighboring nucleotides exert a striking influence on mutation, with the hypermutability of CpG dinucleotides in many genomes being an exemplar. Among the approaches employed to measure the relative importance of sequence neighbors on molecular evolution have been continuous-time Markov process models for substitutions that treat sequences as a series of independent tuples. The most widely used examples are the codon substitution models. We evaluated the suitability of derivatives of the nucleotide frequency weighted (hereafter NF) and tuple frequency weighted (hereafter TF) models for measuring sequence context dependent substitution. Critical properties we address are their relationships to an independent nucleotide process and the robustness of parameter estimation to changes in sequence composition. We then consider the impact on inference concerning dinucleotide substitution processes from application of these two forms to intron sequence alignments from primates.  相似文献   

13.
MOTIVATION: Heterochronous gene sequence data is important for characterizing the evolutionary processes of fast-evolving organisms such as RNA viruses. A limited set of algorithms exists for estimating the rate of nucleotide substitution and inferring phylogenetic trees from such data. The authors here present a new method, Tree and Rate Estimation by Local Evaluation (TREBLE) that robustly calculates the rate of nucleotide substitution and phylogeny with several orders of magnitude improvement in computational time. METHODS: For the basis of its rate estimation TREBLE novelly utilizes a geometric interpretation of the molecular clock assumption to deduce a local estimate of the rate of nucleotide substitution for triplets of dated sequences. Averaging the triplet estimates via a variance weighting yields a global estimate of the rate. From this value, an iterative refinement procedure relying on statistical properties of the triplets then generates a final estimate of the global rate of nucleotide substitution. The estimated global rate is then utilized to find the tree from the pairwise distance matrix via an UPGMA-like algorithm. RESULTS: Simulation studies show that TREBLE estimates the rate of nucleotide substitution with point estimates comparable with the best of available methods. Confidence intervals are comparable with that of BEAST. TREBLE's phylogenetic reconstruction is significantly improved over the other distance matrix method but not as accurate as the Bayesian algorithm. Compared with three other algorithms, TREBLE reduces computational time by a minimum factor of 3000. Relative to the algorithm with the most accurate estimates for the rate of nucleotide substitution (i.e. BEAST), TREBLE is over 10,000 times more computationally efficient. AVAILABILITY: jdobrien.bol.ucla.edu/TREBLE.html  相似文献   

14.
Although phylogenetic inference of protein-coding sequences continues to dominate the literature, few analyses incorporate evolutionary models that consider the genetic code. This problem is exacerbated by the exclusion of codon-based models from commonly employed model selection techniques, presumably due to the computational cost associated with codon models. We investigated an efficient alternative to standard nucleotide substitution models, in which codon position (CP) is incorporated into the model. We determined the most appropriate model for alignments of 177 RNA virus genes and 106 yeast genes, using 11 substitution models including one codon model and four CP models. The majority of analyzed gene alignments are best described by CP substitution models, rather than by standard nucleotide models, and without the computational cost of full codon models. These results have significant implications for phylogenetic inference of coding sequences as they make it clear that substitution models incorporating CPs not only are a computationally realistic alternative to standard models but may also frequently be statistically superior.  相似文献   

15.
We study to what degree patterns of amino acid substitution vary between genes using two models of protein-coding gene evolution. The first divides the amino acids into groups, with one substitution rate for pairs of residues in the same group and a second for those in differing groups. Unlike previous applications of this model, the groups themselves are estimated from data by simulated annealing. The second model makes substitution rates a function of the physical and chemical similarity between two residues. Because we model the evolution of coding DNA sequences as opposed to protein sequences, artifacts arising from the differing numbers of nucleotide substitutions required to bring about various amino acid substitutions are avoided. Using 10 alignments of related sequences (five of orthologous genes and five gene families), we do find differences in substitution patterns. We also find that, although patterns of amino acid substitution vary temporally within the history of a gene, variation is not greater in paralogous than in orthologous genes. Improved understanding of such gene-specific variation in substitution patterns may have implications for applications such as sequence alignment and phylogenetic inference.  相似文献   

16.
MOTIVATION: TipDate is a program that will use sequences that have been isolated at different dates to estimate their rate of molecular evolution. The program provides a maximum likelihood estimate of the rate and also the associated date of the most recent common ancestor of the sequences, under a model which assumes a constant rate of substitution (molecular clock) but which accommodates the dates of isolation. Confidence intervals for these parameters are also estimated. Results: The approach was applied to a sample of 17 dengue virus serotype 4 sequences, isolated at dates ranging from 1956 to 1994. The rate of substitution for this serotype was estimated to be 7.91 x 10(-4) substitutions per site per year (95% confidence intervals of 6.07 x 10(-4), 9.86 x 10(-4)). This is compatible with a date of 1922 (95% confidence intervals of 1900-1936) for the most recent common ancestor of these sequences. AVAILABILITY: TipDate can be obtained by WWW from http://evolve.zoo. ox.ac.uk/software. The package includes the source code, manual and example files. Both UNIX and Apple Macintosh versions are available from the same site.  相似文献   

17.
Tests of applicability of several substitution models for DNA sequence data   总被引:8,自引:3,他引:5  
Using linear invariants for various models of nucleotide substitution, we developed test statistics for examining the applicability of a specific model to a given dataset in phylogenetic inference. The models examined are those developed by Jukes and Cantor (1969), Kimura (1980), Tajima and Nei (1984), Hasegawa et al. (1985), Tamura (1992), Tamura and Nei (1993), and a new model called the eight-parameter model. The first six models are special cases of the last model. The test statistics developed are independent of evolutionary time and phylogeny, although the variances of the statistics contain phylogenetic information. Therefore, these statistics can be used before a phylogenetic tree is estimated. Our objective is to find the simplest model that is applicable to a given dataset, keeping in mind that a simple model usually gives an estimate of evolutionary distance (number of nucleotide substitutions per site) with a smaller variance than a complicated model when the simple model is correct. We have also developed a statistical test of the homogeneity of nucleotide frequencies of a sample of several sequences that takes into account possible phylogenetic correlations. This test is used to examine the stationarity in time of the base frequencies in the sample. For Hasegawa et al.'s and the eight-parameter models, analytical formulas for estimating evolutionary distances are presented. Application of the above tests to several sets of real data has shown that the assumption of stationarity of base composition is usually acceptable when the sequences studied are closely related but otherwise it is rejected. Similarly, the simple models of nucleotide substitution are almost always rejected when actual genes are distantly related and/or the total number of nucleotides examined is large.   相似文献   

18.
Murphy and colleagues reported that the mammalian phylogeny was resolved by Bayesian phylogenetics. However, the DNA sequences they used had many alignment gaps and undetermined nucleotide sites. We therefore reanalyzed their data by minimizing unshared nucleotide sites and retaining as many species as possible (13 species). In constructing phylogenetic trees, we used the Bayesian, maximum likelihood (ML), maximum parsimony (MP), and neighbor-joining (NJ) methods with different substitution models. These trees were constructed by using both protein and DNA sequences. The results showed that the posterior probabilities for Bayesian trees were generally much higher than the bootstrap values for ML, MP, and NJ trees. Two different Bayesian topologies for the same set of species were sometimes supported by high posterior probabilities, implying that two different topologies can be judged to be correct by Bayesian phylogenetics. This suggests that the posterior probability in Bayesian analysis can be excessively high as an indication of statistical confidence and therefore Murphy et al.'s tree, which largely depends on Bayesian posterior probability, may not be correct.  相似文献   

19.
MOTIVATION: The problem of phylogenetic inference from datasets including incomplete or uncertain entries is among the most relevant issues in systematic biology. In this paper, we propose a new method for reconstructing phylogenetic trees from partial distance matrices. The new method combines the usage of the four-point condition and the ultrametric inequality with a weighted least-squares approximation to solve the problem of missing entries. It can be applied to infer phylogenies from evolutionary data including some missing or uncertain information, for instance, when observed nucleotide or protein sequences contain gaps or missing entries. RESULTS: In a number of simulations involving incomplete datasets, the proposed method outperformed the well-known Ultrametric and Additive procedures. Generally, the new method also outperformed all the other competing approaches including Triangle and Fitch which is the most popular least-squares method for reconstructing phylogenies. We illustrate the usefulness of the introduced method by analyzing two well-known phylogenies derived from complete mammalian mtDNA sequences. Some interesting theoretical results concerning the NP-hardness of the ordinary and weighted least-squares fitting of a phylogenetic tree to a partial distance matrix are also established. AVAILABILITY: The T-Rex package including this method is freely available for download at http://www.info.uqam.ca/~makarenv/trex.html  相似文献   

20.
In cancer clinical trials, it is often of interest in estimating the ratios of hazard rates at some specific time points during the study from two independent populations. In this paper, we consider nonparametric confidence interval procedures for the hazard ratio based on kernel estimates for the hazard rates with under-smoothing bandwidths. Two methods are used to derive the confidence intervals: one based on the asymptotic normality of the ratio of the kernel estimates for the hazard rates in two populations and another through Fieller's Theorem. The performances of the proposed confidence intervals are evaluated through Monte-Carlo simulations and applied to the analysis of data from a clinical trial on early breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号