首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 62 毫秒
1.
【目的】菌株MIM37为具有两种光能利用途径的光合异养细菌,分析其基因组和光照对生长的影响,为理解光能利用途径、光营养生物多样性以及光合作用的进化和功能等提供线索。【方法】采用平板涂布划线法分离菌株,结合形态观察及16S rRNA基因和光合基因序列同源性与系统发育分析进行初步分类鉴定;以分光光度法和荧光显微观察法测定光照和黑暗培养下培养液细胞浓度和单细胞体积;构建片段长度为300?500 bp的Illumina PE文库,以Illumina Hiseq2000进行基因组测序,以SOAPdenovo和GapCloser组装序列,以RAST在线软件注释基因组。【结果】从内蒙古腾格里沙漠天鹅湖表层水中分离获得一株细菌MIM37,经16S rRNA基因、pufM和视紫质基因同源性和系统发育分析均显示其与Sphingomonas属亲缘关系最为密切;相对黑暗培养,光照刺激下的最大细胞浓度和单细胞体积大小分别提高了1.2和5.6倍;基因组注释显示MIM37代谢途径多样,含典型好氧菌的呼吸电子传递链,具有完整的好氧不产氧细菌的光合基因簇及xanthorhodopsin-like视紫质蛋白基因,合成铁载体,还原重金属,降解微囊藻毒素和多环芳烃类等。【结论】MIM37属于Sphingomonas属,具有两种光能利用途径,光照可明显促进其生长,多样的代谢模式可能使其在自然环境中极具竞争力、分布广泛并具有应用于修复环境污染的潜力。  相似文献   

2.
海洋玫瑰杆菌类群研究进展   总被引:3,自引:0,他引:3  
陈正浩  张永雨  杨素萍 《生态学报》2015,35(5):1620-1629
海洋玫瑰杆菌类群(Roseobacter lineage)是属于α-变形菌纲中的一类系统发育相近,但生理代谢功能多样的细菌类群,包含40多个不同的细菌种属。它们在海洋中丰度较高,且分布极为广泛,尤其在近海与极地海洋中,其丰度约占整个浮游细菌群落的15%—25%。玫瑰杆菌类群通过其多样化的生理代谢功能(如好氧不产氧光合作用、一氧化碳氧化、硫化物降解等)在海洋碳、硫循环和全球气候调节中发挥着重要作用。此外,玫瑰杆菌类群还能产生多种具生物活性的次生代谢物质。简要综述了海洋玫瑰杆菌类群的生态分布特征、生存方式、生理代谢功能、基因组特征等的一些研究进展,并结合作者的工作对未来的研究进行了展望。  相似文献   

3.
好氧不产氧光合细菌(AAPB)的多样性在海洋中已经广泛研究,但在富营养化湖泊中却研究甚少。通过构建和分析AAPB光合中心合成中的关键基因pufM克隆文库,以期揭示乌梁素海富营养化湖区AAPB分布及其系统发育多样性,探讨其在富营养化湖泊中的功能和作用。对乌梁素海红圪卜湖区水体文库中的52个克隆子进行分析,产生了28个OTU,文库覆盖度达到71.4%,反映出文库有较好的代表性。同源性和系统发育分析结果表明,乌梁素海红圪卜湖区AAPB有较高的多样性,与我们之前所发现的同一湖区总细菌多样性较低形成鲜明对比。所获得的序列分属7个亚群,即γ-Proteobacteria(44.2%,含Group-1,-2和-3共3个亚群)、β-Proteobacteria(21.2%)、Rhodobacter-like(7.69%)及2个未知亚群unknown Group-1(21.2%)和Group-2(5.77%)。其中γ-Proteobacteria占到总克隆的44.2%,在低盐的乌梁素海环境中出现高比例的γ-Proteobacteria之前并未见类似报道,并且乌梁素海中存在一些可能是富营养化湖泊特有的AAPB。这表明AAPB可能在富营养化湖泊生态系统的维持和稳定中有重要作用。  相似文献   

4.
Hu Y  Du H  Jiao N  Zeng Y 《FEMS microbiology letters》2006,263(2):200-206
Known anoxygenic photosynthetic bacteria (APB) affiliated to Gammaproteobacteria usually use anaerobic metabolism and are restricted to oxygen-free habitats. Here, we report abundant (average of 34.5%) presence of diverse APB related to gamma-like Proteobacteria in oxic oceanic surface water as indicated by the pufM gene, that encodes the M subunit of the light reaction centre complex. Thus, our sequences were most likely derived from aerobic anoxygenic phototrophs (AAnP). Two genetically distinct genotypes were revealed: one was from the oligotrophic North Pacific Ocean Gyre and the other, was from the trophic East China Sea and Bering Sea. The discovery of abundant presence of novel gamma-like Proteobacterial pufM gene in the oxic seawater extends the functional ecotypes of AAnP.  相似文献   

5.
The anoxygenic phototrophic bacterial community of the brackish meromictic Lake Shira (Khakassia) was investigated in August 2001, July 2002, and February–March 2003. In all the periods of investigation, the prevailing microorganisms were purple sulfur bacteria similar to Lamprocystis purpurea in morphology and pigment composition. Their highest number (3 × 105 cells/ml) was recorded in July 2002 at the depth of 15 m. According to 16S rRNA gene analysis, the strain of purple sulfur bacteria isolated in 2001 and designated ShAm01 exhibited 98.6% similarity to the type strain of Thiocapsa roseopersicina and 97.1–94.4% similarity to the type strains of Tca. pendens, Tca. litoralis, and Tca. rosea. The minor microorganisms of the anoxygenic phototrophic bacterial community within the period of investigation were nonsulfur purple bacteria phylogenetically close to Rhodovulum strictum (98.3% similarity, strain ShRb01), Ahrensia kielensis (of 93.9% similarity, strain ShRb02), Rhodomicrobium vannieli (of 99.7% similarity, strain ShRmc01), and green sulfur bacteria, phylogenetically close to Chlorobium limicola (of 98.7% similarity, strain ShCl03).  相似文献   

6.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

7.
【目的】湖光岩玛珥湖是一类特殊的火山口湖,它完全封闭,地质年代久远,尚未受人类活动的剧烈影响,孕育着丰富而特殊的微生物种群。好氧不产氧光合细菌(AAPB)是以其在有氧情况下能行使光合功能而定义的一类专性异养细菌,其生理生态特征独特,进化年代久远,在水生生态系统的上层水体中广泛分布。目前,AAPB在玛珥湖水体中是否有分布仍是未知。【方法】构建和比较夏季湖水1 m、5 m、12 m三个水层的总DNA和总RNA的AAPB光合中心合成的关键基因pufM的6个克隆文库,并结合定量PCR技术,分析了不同水层AAPB的分布、系统发育多样性及其在总细菌中的比重。【结果】6个文库覆盖率和稀释曲线显示样本初步揭示了各水层优势AAPB类群的多样性。BLAST核苷酸同源性介于80%93%;多样性指数表明,湖光岩表层和底层多样性相当,中间层最低,总RNA的多样性高于总DNA。系统发育分析结果表明,OTU21 24所含的序列(占总序列的49.43%)与β-变形细菌的进化距离最接近,是湖光岩玛珥湖的优势AAPB菌群。定量PCR结果显示1 m水层中AAPB在总细菌中的比重最高,可达38.06%;而5 m水层中AAPB所占的比重最低,仅为0.85%;12 m为9.54%。【结论】湖光岩玛珥湖孕育着丰富而多样的AAPB类群。  相似文献   

8.
An anaerobic phototrophic bacterial community in Lake Mogilnoe, a relict lake on Kil'din Island in the Barents Sea, was studied in June 1999 and September 2001. Irrespective of the season, the upper layer of the anaerobic zone of this lake had a specific species composition of sulfur phototrophic bacteria, which were dominated by the brown-colored green sulfur bacterium Chlorobium phaeovibrioides. The maximum number of sulfur phototrophic bacteria was observed in June 1999 at a depth of 9 m, which corresponded to a concentration of bacteriochlorophyll (Bchl) e equal to 4.6 mg/l. In September 2001, the maximum concentration of this pigment (3.4 mg/l) was found at a depth of 10 m. In both seasons, the concentration of Bchl a did not exceed 3 μg/l. Purple sulfur bacteria were low in number, which can be explained by their poor adaptation to the hydrochemical and optical conditions of the Lake Mogilnoe water. In June 1999, the water contained a considerable number of Pelodictyon phaeum microcolonies and Prosthecochloris phaeoasteroides cell chains, which was not the case in September 2001. A 16S rDNA-based phylogenetic analysis of pure cultures of phototrophic bacteria isolated from the lake water confirmed that the bacterial community is dominated by Chl. phaeovibrioides and showed the presence of three minor species, Thiocystis gelatinosa, Thiocapsa sp., and Thiorhodococcus sp., the last of which is specific to Lake Mogilnoe.  相似文献   

9.
Aerobic anoxygenic phototrophic bacteria (AAPB) are widespread and play an important role in carbon cycling in the lakes of the Qinghai–Tibetan Plateau. However, little is known about how free-living and particle-attached AAPB distribute with salinity in the Qinghai–Tibetan lakes. In the present study, the abundance and diversity of free-living and particle-attached AAPB were investigated in seven Qinghai–Tibetan lakes with salinity ranging from freshwater to almost saturation (1.2 g L?1 241.1 g L?1). An integrated approach was employed including pufL-M gene (encoding the photosynthetic reaction center of AAPB) based quantitative polymerase chain reaction (qPCR) and PCR-cloning phylogenetic analysis. The qPCR data showed that the ratio between particle-attached and free-living AAPB was positively correlated (R2 = 0.73, p < 0.01) with increasing salinity. The phylogenetic analysis of pufL-M gene showed that the composition of AAPB population varied with salinity in the studied Qinghai–Tibetan lakes. These results suggested that salinity may be the important factor shaping the AAPB distribution in the studied Qinghai–Tibetan lakes, and AAPB may be adapted to the harsh conditions in the Qinghai–Tibetan lakes by attaching to particles.  相似文献   

10.
The abundance of aerobic anoxygenic phototrophic bacteria (AAPB), a new functional group that plays important roles in marine carbon cycling, is determined frequently by infrared epifluorescence microscopic analysis (IREM) or high-performance liquid chromatography (HPLC) based on detecting BChl a (bacteriochlorophyll a) fluorescence signal at 880 nm. Unfortunately, the fluorescence signal is often influenced by environmental variables and physiological state of cell. Here we developed a real-time quantitative PCR (qPCR) assay based on pufM gene to specifically quantify AAPB in marine environments. High specificity and sensitivity for estimation of AAPB abundance were revealed by analysis of amplification products, melting curves and target sequences. The phylogenetic tree indicated that this primer set is suitable for a wide genetic diversity of AAPB, including α-3, α-4 Proteobacteria and clones of unclear taxonomic position. In contrast, no amplicon was obtained from green non-sulphur bacteria and oxygenic phototrophic bacteria such as Cyanobacterial genomic DNA. The melting behavior could indicate predominant phenotypes in AAPB community in addition to validating the products of qPCR. The AAPB was estimated to range from 1.3 × 104 cell/ml to 3.4 × 105 cell/ml in our 10 tested water samples by this qPCR assay. Further investigations on the abundance distribution of AAPB in marine environments using the qPCR assay may provide new insight into their ecological functions.  相似文献   

11.
Mass-spectrometric investigation of carbon isotope composition (δ13C) was carried out for suspended organic matter and dissolved mineral compounds for the water column of some meromictic water bodies differing in salinity and trophic state. As a rule, a more pronounced carbon isotope fractionation (resulting from the metabolism of phytoplankton and anoxygenic phototrophic bacteria) was revealed in the zones of enhanced oxygenic and anoxygenic photosynthesis. Carbon isotope fractionation at the border between oxidized and reduced waters depends both on the activity of microbial communities and on the dominant species of phototrophic microorganisms. Analysis of the distribution profiles of the isotopic composition of suspended organic matter and dissolved mineral carbon revealed active mineralization of the organic matter newly formed via anoxygenic photosynthesis in the monimolimnion by microbial communities, resulting in the release of isotopically light carbon dioxide. Mineral carbon in the anaerobic zones of highly productive meromictic water bodies is therefore enriched with the light 12C isotope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号