首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean size and percentage of budded and unbudded cells of Candida albicans grown in batch culture over a wide range of doubling times have been measured. Cell volume decreased with increased doubling time and a nonlinear approach to an asymptotic minimum was observed. When cells were separated by age according to bud scars, each age showed a similar decrease. During each cell division cycle, size increased slowly during both budded and unbudded periods so that each generation was significantly larger than the preceding. There was no difference in size between the parent portion of budded cells and unbudded cells of the same age. Time-lapse photomicroscopy of cells growing on solid medium showed that cells divide asymmetrically with larger parents having a shorter subsequent cycle time than the smaller daughter, although the time utilized for bud formation was similar. When cells were shifted from a medium supporting a low growth rate and small size to a medium supporting a faster growth rate and larger size, both budded and unbudded cells increased significantly in size. As the doubling time increased, both the budded and unbudded portions of parental and daughter cycles increased.  相似文献   

2.
Bud scar analysis integrated with mathematical analysis of DNA and protein distributions obtained by flow microfluorometry have been used to analyze the cell cycle of the budding yeast Saccharomyces cerevisiae. In populations of this yeast growing exponentially in batch at 30 degrees C on different carbon and nitrogen sources with duplication times between 75 and 314 min, the budded period is always shorter (approximately 5 to 10 min) than the sum of the S + G2 + M + G1* phases (determined by the Fried analysis of DNA distributions), and parent cells always show a prereplicative unbudded period. The analysis of protein distributions obtained by flow microfluorometry indicates that the protein level per cell required for bud emergence increases at each new generation of parent cells, as observed previously for cell volume. A wide heterogeneity of cell populations derives from this pattern of budding, since older (and less frequent) parent cells have shorter generation times and produce larger (and with shorter cycle times) daughter cells. A possible molecular mechanism for the observed increase with genealogical age of the critical protein level required for bud emergence is discussed.  相似文献   

3.
The yeast-phase cell cycle of Wangiella dermatitidis was studied using flow microfluorimetry and the deoxyribonucleic acid (DNA) synthesis inhibitor hydroxyurea (HU). Exposure of exponential-phase yeastlike cells to 0.1 M HU for 3 to 6 h resulted in the arrest of the cells in DNA synthesis and produced a nearly homogeneous population of unbudded cells. Treatment of the yeast-phase cells with HU for 9 h or longer resulted in the accumulation of the cells predominantly as budded forms having either a single nucleus in the mother cell or a single nucleus arrested in the isthmus between the mother cell and the daughter bud. Exposure of unbudded stationary-phase cells to 0.1 M HU resulted in the accumulation of the cells in the same phenotypes. Analysis by flow microfluorimetry and cell counts of HU-inhibited mithramycin-stained cells indicated that the eventual progress of HU-inhibited cells from unbudded to the two budded forms was due to the limited continuation of the growth sequence of the cell cycle even in the absence of DNA synthesis, nuclear division, and in some cases nuclear migration. On the basis of these observations and the results of flow microfluorimetric analysis of exponential-phase cells, a map of the yeast-phase cell cycle was constructed. The cycle appears to consist of two independent sequences of events, a budding growth sequence and a DNA division sequence. The nuclear division cycle of yeast-phase cells growing exponentially with a 4.5-h generation time is composed of a G1 interval of 148 min, as S phase of 16 min, and a G2 plus M interval of 107 min.  相似文献   

4.
Asymmetrical division of Saccharomyces cerevisiae.   总被引:7,自引:2,他引:5       下载免费PDF全文
The unequal division model proposed for budding yeast (L. H. Hartwell and M. W. Unger, J. Cell Biol. 75:422-435, 1977) was tested by bud scar analyses of steady-state exponential batch cultures of Saccharomyces cerevisiae growing at 30 degrees C at 19 different rates, which were obtained by altering the carbon source. The analyses involved counting the number of bud scars, determining the presence or absence of buds on at least 1,000 cells, and independently measuring the doubling times (gamma) by cell number increase. A number of assumptions in the model were tested and found to be in good agreement with the model. Maximum likelihood estimates of daughter cycle time (D), parent cycle time (P), and the budded phase (B) were obtained, and we concluded that asymmetrical division occurred at all growth rates tested (gamma, 75 to 250 min). D, P, and B are all linearly related to gamma, and D, P, and gamma converge to equality (symmetrical division) at gamma = 65 min. Expressions for the genealogical age distribution for asymmetrically dividing yeast cells were derived. The fraction of daughter cells in steady-state populations is e-alpha P, and the fraction of parent cells of age n (where n is the number of buds that a cell has produced) is (e-alpha P)n-1(1-e-alpha P)2, where alpha = IN2/gamma; thus, the distribution changes with growth rate. The frequency of cells with different numbers of bud scars (i.e., different genealogical ages) was determined for all growth rates, and the observed distribution changed with the growth rate in the manner predicted. In this haploid strain new buds formed adjacent to the previous buds in a regular pattern, but at slower growth rates the pattern was more irregular. The median volume of the cells and the volume at start in the cell cycle both increased at faster growth rates. The implications of these findings for the control of the cell cycle are discussed.  相似文献   

5.
During the lag and early exponential phase of growth, 50–60% of budded cells of Saccharomyces cerevisiae strain GS1731 were multiply budded. During subsequent culture growth, the frequency of multiply budded cells decreased until by stationary phase multiply budded cells were rare. Data from renewed growth of a culture after hydroxyurea treatment indicated that GS1731 mother cells could assemble up to three pre-bud sites and begin bud growth and development in each. Light and scanning electron microscopy showed two or three very small buds emerging simultaneously on a mother cell and either reaching full size at the same time or enlarging sequentially. Immunofluorescence studies revealed that these multiply budded cells had multiple bundles of cytoplasmic microtubules. DAPI staining of nuclei revealed that some of the unbudded mother cells were multinucleate and completed cytokinesis giving rise to normal daughter cells.  相似文献   

6.
For cells of the yeast Saccharomyces cerevisiae, conditions which limit S phase or nuclear division allow steady-state division kinetics without significant effects on growth. Such cells become unusually large. When large proliferating cells were released from any one of several conditions which slowed progress through the DNA-division sequence, they underwent a period of accelerated division with a cell cycle devoid of a G1 interval, as evidenced by low proportions of unbudded cells and shifted execution points for the 'start' cell cycle step. We interpret these results to mean that when released from conditions slowing the DNA-division sequence these large cells continue for several cell doublings to accumulate mass fast enough to eliminate the need for a G1 interval. The results support the conclusion that the yeast G1 interval is the for most part only an interval of growth.  相似文献   

7.
The yeast Saccharomyces cerevisiae cell surface outside of the bud scars displayed an increasing fluorescence intensity with increasing cell size (volume), where fluorescence was due to irreversible binding of the fluorescent dye calcofluor. The increase in fluorescence intensity appeared to be due to an increase in the density of fluorescence per unit surface area of the cell. Exposure time measurements from a photomicroscope were used to quantitate fluorescence intensity on individual cells. The cell size dependent increase in fluorescence intensity was displayed by unbudded cells from stationary phase populations, and unbudded and parent cells from exponentially growing populations. Abnormally large cells generated during the arrest of cell division with alpha-factor or restrictive temperature for cdc3, 8, 13, 24, and 28 cell division cycle mutants, displayed significantly greater fluorescence intensity compared to the smaller cells generated during the arrest of division for cdc25, 33, and 35 mutant strains. Fluorescence intensity on newly emerging buds was broadly dependent on both the size of the bud, and the size of the parent cells on which the buds were growing.  相似文献   

8.
Exponentially growing cells of Saccharomyces cerevisiae were fractionated by centrifugation in isotonic, self-generated gradients of Percoll. Rapidly growing cells, μ = 0.5 × h−1, with nearly equal length of the daughter and the parental cell cycle were fractionated according to a cell cycle-related density variation. In these cells the net rate of protein synthesis varies nearly 2-fold during the cell cycle. Subsequent separations according to cell size revealed that the highest rate is observed during G2 period. Slow-growing cells, μ = 0.2 × h−1, were fractionated on shallow Percoll gradients in a bimodal fashion, primarily as a dense daughter fraction and a composite light fraction. Thereby a marked high rate of protein synthesis in large unbudded daughter cells was revealed. Separations according to cell size revealed a cell cycle-related separation of budded cells, and the highest rate is observed, as before, in the G2 period. Irrespective of the growth rate a non-exponential increase of cell protein is thereby observed through the cell cycle of budding yeast. Septation and cell separation coincide with a low degree of ribosome exploitation.  相似文献   

9.
The yeast Candida utilis was continuously synchronized by the phased method of cultivation with the nitrogen source as the growth-limiting nutrient. The doubling time (phasing period) of cells was 6 h. Both cell number and deoxyribonucleic acid synthesis showed a characteristic stepwise increase during the phased growth. The time of bud emergence coincided with the time of initiation of deoxyribonucleic acid synthesis. Size distribution studies combined with microscopic analysis showed that the cells expanded only during the unbudded phase of growth. Usually the cells stopped increasing in size about 30 min before bud emergence, and the arrest of the increase in cell volume coincided with the exhaustion of nitron from the medium. There was no net change in the volume of cells during the bud expansion phase of growth, suggesting that as the bud expanded, the volume of the mother portion of the cell decreased. After division the cells expanded slightly. The postdivision expansion of cells, unlike the growth before bud initiation, occurred in the absence of the growth-limiting nutrient. The newly formed daughter cells were smaller than the mother cells and expanded at a faster rate, so that both types of cells reached maximum size at the same time. Possible reasons for the different rates of expansion of mother and daughter cells are discussed.  相似文献   

10.
The pattern of volume growth of Saccharomyces cerevisiae a/alpha was determined by image cytometry for daughter cells and consecutive cycles of parent cells. An image analysis program was specially developed to measure separately the volume of bud and mother cell parts and to quantify the number of bud scars on each parent cell. All volumetric data and cell attributes (budding state, number of scars) were stored in such a way that separate volume distributions of cells or cell parts with any combination of properties--for instance, buds present on mothers with two scars or cells without scars (i.e., daughter cells) and without buds--could be obtained. By a new method called intersection analysis, the average volumes of daughter and parent cells at birth and at division could be determined for a steady-state population. These volumes compared well with those directly measured from cells synchronized by centrifugal elutriation. During synchronous growth of daughter cells, the pattern of volume increase appeared to be largely exponential. However, after bud emergence, larger volumes than those predicted by a continuous exponential increase were obtained, which confirms the reported decrease in buoyant density. The cycle times calculated from the steady-state population by applying the age distribution equation deviated from those directly obtained from the synchronized culture, probably because of inadequate scoring of bud scars. Therefore, for the construction of a volume-time diagram, we used volume measurements obtained from the steady-state population and cycle times obtained from the synchronized population. The diagram shows that after bud emergence, mother cell parts continue to grow at a smaller rate, increasing about 10% in volume during the budding period. Second-generation daughter cells, ie., cells born from parents left with two scars, were significantly smaller than first-generation daughter cells. Second- and third-generation parent cells showed a decreased volume growth rate and a shorter budding period than that of daughter cells.  相似文献   

11.
In Candida albicans, cells actively growing in the budding form cannot be immediately induced to form a mycelium until they enter stationary phase. However, if exponential phase cells are starved for a minimum of 10 to 20 min, they are inducible. Using a video-monitored perfusion chamber, we found that starved cells were able to form mycelia regardless of their position in the budding cycle. When starved exponential cells were released into fresh nutrient medium at high temperature and pH, conditions conducive to mycelium formation, unbudded cells evaginated after an average lag period of 75 min and then grew exclusively in the mycelial form. Depending upon the volume, or maturity, of the bud, budded cells entered two different avenues of outgrowth leading to mycelium formation. If the daughter bud was small, growth resumed by apical elongation of the bud, leading to a 'shmoo' shape which tapered into an apical mycelium. If the daughter bud was large, the cell underwent a sequence of evaginations: first, the mother cell evaginated after an average period of 75 min; then the daughter bud evaginated 40 min later. Both evaginations then grew in the mycelial form. In this latter sequence, the evagination on the mother cell was positioned non-randomly, occurring in the majority of cells adjacent to the bud. All buds undergoing evagination contained a nucleus, but roughly 20% of buds undergoing apical elongation did not.  相似文献   

12.
The mean size and percentage of budded cells of a wild-type haploid strain of Saccharomyces cerevisiae grown in batch culture over a wide range of doubling times (tau) have been measured using microscopic measurements and a particle size analyzer. Mean size increased over a 2.5-fold range with increasing growth rate (from tau = 450 min to tau = 75 min). Mean size is principally a function of growth rate and not of a particular carbon source. The duration of the budded phase increased at slow growth rates according to the empirical equation, budded phase = 0.5 tau + 27 (all in minutes). Using a recent model of the cell cycle in which division is thought to be asymmetric, equations have been derived for mean cell age and mean cell volume. The data are consistent with the notion that initiation of the cell cycle occurs at "start" after attainment of a critical cell size, and this size is dependent on growth rate, being, at slow growth rates, 63% of the volume of fast growth rates. Previous reports are reanalyzed in the light of the unequal division model and associated population equations.  相似文献   

13.
A bimolecular mechanism for the cell size control of the cell cycle   总被引:2,自引:0,他引:2  
A molecular model for the control of cell size has been developed. It is based on two molecules, one (I) acts as an inhibitor of the entrance into S phase, and it is synthetised just after cell separation in a fixed amount per nucleus. The other (A) is an activator of the S phase, and it is synthetised at a ratio proportional to the overall protein accumulation. The activator reacts stoichiometrically with (I), and after all the (I) molecules have been titrated, (A) begins to accumulate. When it reaches a threshold value, it triggers the onset of DNA replication. This model was tested by simulation and when applied to the case of unequal division explains a number of features of an exponentially growing yeast cell population: (a) the lengths of TP (cycle time of parent cells) and TD (cycle time of daughter cells) verify the condition exp(- KTP ) + exp(- KTD ) = 1; (b) the changes of the average cell size of populations at different growth rates; (c) the frequency of parents and daughters at various growth rates; (d) the increase of cell size at bud initiation for cells of increasing genealogical age; (e) the existence of a TP - TB period (difference between the cycle time of parents and the length of budded phase) that depends linearly upon the doubling time of the population.  相似文献   

14.
Patterns of bud-site selection in the yeast Saccharomyces cerevisiae   总被引:15,自引:7,他引:8       下载免费PDF全文
  相似文献   

15.
16.
A spectrophotometric assay is presented for monitoring the regulation of cell division by the polypeptide alpha-factor in cultures of living cells of Saccharomyces cerevisiae yeast. This assay is simple, automated, and may have wider application in the study of other eucaryotic cells that do not require anchorage for cell growth. The kinetics of absorbance change were monitored continuously over time in yeast cell cultures that were mixed and aerated in cuvettes fitted with top-loading propeller stirrers. The absorbance doubling time. TD(Abs), was identical to the cell number doubling time in the absence of cell division arrest by alpha-factor. alpha-Factor lengthened the TD(Abs) during division arrest. At pH 5.8, 10(5) 381G cells/ml, the Khalf-maximal was 250 +/- 50 nM alpha-factor for the TD(Abs) increase during arrest, with a maximum increase of five-fold. After a period of time the TD(Abs) abruptly shortened. This is defined as the spectrophotometric recovery time (RTspec) and was compared to the time of recovery that is due to the reinitiation of cell division monitored by bud emergence (RTBE). RTBE occurred 40 +/- 5 min prior to RTspec when recovery was spontaneous or was artificially induced by the removal of alpha-factor (pH 5.8, 381G). The difference between RTBE and RTspec was independent of alpha-factor concentration between 0.05 and 1 microM and cell concentration between 1 and greater than or equal to 25 x 10(5) cells/ml (pH 5.8, 381G) but was both pH and cell strain dependent. At pH 5.8 and 2.7 the recovery from arrest occurred by inactivation of alpha-factor. The TD(Abs) increase during arrest appears to be due to an alpha-factor-induced inhibition of net cell mass increase, an effect that has not been reported previously. Evidence is presented that this process is also correlated with the formation of cell projections.  相似文献   

17.
《Process Biochemistry》2007,42(5):828-833
A cell cycle model is proposed for methylotrophic yeast Pichia pastoris grown on glycerol during fed-batch cultivation. Morphological differentiation of cells, such as unbudded daughter cell, unbudded parent cell and budding cell, is depicted by the model. During the cyclic growth, cells in different cycling period are assumed to undergo sequential shifting dominantly. The input of the cell cycle model is the specific growth rate, which is calculated from the macrokinetic model proposed previously. The cell cycle related variables, such as the fraction of budding cells and the cell density are then simulated. Model validation is carried out with the experimental data of off-line assays.  相似文献   

18.
We have isolated a novel gene (NUM1) with unusual internal periodicity. The NUM1 gene encodes a 313 kDa protein with a potential Ca2+ binding site and a central domain containing 12 almost identical tandem repeats of a 64 amino acid polypeptide. num1-disrupted strains grow normally, but contain many budded cells with two nuclei in the mother cell instead of a single nucleus at the bud neck, while all unbudded cells are uninucleate. This indicates that most G2 nuclei divide in the mother before migrating to the neck, followed by the migration of one of the two daughter nuclei into the bud. Furthermore, haploid num1 strains tend to diploidize during mitosis, and homozygous num1 diploid or tetraploid cells sporulate to form many budded asci with up to eight haploid or diploid spores, respectively, indicating that meiosis starts before nuclear redistribution and cytokinesis. Our data suggest that the NUM1 protein is involved in the interaction of the G2 nucleus with the bud neck.  相似文献   

19.
Under the phased method of cultivation the yeast Candida utilis grew and divided synchronously. The newly formed cells were relatively small, and a new cell cycle was not initiated until the cells could attain a certain minimum size (critical size). Although the cells expanded to some extent after division, the critical size was not reached until a fresh supply of medium was provided. With the arrival of the fresh supply of growth medium at the beginning of the phasing period, the cells expanded rapidly, and new cell cycles were initiated. The cells continued to expand until the growth-limiting nutrient (nitrogen source) was exhausted or until 90 min, which ever occurred first. Usually, buds emerged at a constant time after the start of the phasing period. The time of bud emergence was independent of the size attained by the cells during the expansion phase of growth. The results indicated that it was initiation of the cell cycle that was under size control, and not bud emergence. Bud emergence seemed to be under the control of a timer. The start of this timer seemed to be at or immediately after the beginning of the phasing period. Protein synthesis was essential for the initiation and expansion of buds. However, inhibition of protein synthesis by cycloheximide did not prevent unbudded cells or the parent portion of budded cells from expanding. Cycloheximide seemed to abolish the control mechanism(s) which prevented the cells from expanding after they had reached the maximum size.  相似文献   

20.
Tunicamycin is an antimicrobial agent which inhibits the first reaction of the dolichol pathway leading to N-glycosylation of proteins. The effect of tunicamycin on the growth of the dimorphic fungus Candida albicans differed depending on the growth phase of the organism. Addition of tunicamycin to stationary phase yeast cells inhibited the resumption of growth of those cells in either morphology, as cultures failed to initiate either yeast bud or germ tube formation. When tunicamycin was added to growing cells, growth was inhibited but not immediately. When it was added to germ tube cultures, nuclear division and septum formation continued for some time before ceasing. Addition of the drug to exponential phase yeast cultures resulted in an approximately 45% increase in cell number before cell division ceased and yeast accumulated in both budded and unbudded stages of the cell cycle. Accumulation of trichloroacetic acid precipitable radiolabelled protein and nucleic acid continued unchanged for some time following addition of tunicamycin; however, after a while a reduced rate of accumulation was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号