首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.  相似文献   

2.
The influence of asynchronous actuation of the Angara-5-1 facility modules on the implosion symmetry of the wire array plasma in the Z-pinch mode is studied. It is shown that an increase in the r.m.s. jitter in the start times of the modules leads to an appreciable azimuthal asymmetry of magnetic field penetration inside the wire array and, as a consequence, to an increase in the duration of the soft X-ray pulse, a decrease in its power, and a shift of the Z-pinch with respect to the array axis. Necessary conditions for axisymmetric pinch implosion are determined. Experimental data on the magnitude and azimuthal distribution of the current (magnetic field) inside the wire array were obtained from magnetic probe measurements. The position of the Z-pinch with respect to the wire array axis was determined from two-dimensional X-ray images and radial optical streak images.  相似文献   

3.
It is shown that, at a sufficiently high current growth rate, the initial stage of implosion of a wire array is significantly affected by the radial electric fields. Due to the specific electrode configuration of wire arrays, the magnitude of the oppositely directed radial electric fields in different wire segments can reach 5 MV/cm. It is found that the process of plasma formation proceeds in different ways in segments with oppositely directed initial radial electric fields. The influence of this effect (the so-called “polarity effect”) on the implosion of cylindrical tungsten wire arrays in the Angara-5-1 facility becomes significant when the load voltage grows at a sufficiently high rate.  相似文献   

4.
Results are presented from experiments on the implosion of simple and nested wire arrays of different mass and material composition (W and/or Al). The experiments were performed on the S-300 facility (a high-current pulsed power generator with a voltage pulse amplitude of 700 kV, current amplitude of 2.5–3.5 MA, and pulse duration of 100 ns) at the Kurchatov Institute (Moscow). The imploding arrays were recorded using five-frame laser shadowgraphy, three-frame image-tube photography, an optical streak camera, X-ray pinhole cameras with different filters, X-ray polychromator, and X-ray spectrometer on the basis of a convex mica crystal. Laser probing measurements indicate that the current-carrying structure undergoes a fast (over a time shorter than 10 ns) global rearrangement, which manifests itself as the emergence of transparent regions. This effect is presumably related to the grouping of the wires, which carry currents of a few tens of kiloamperes, or to the current filamentation in their common plasma corona. The radiation of liners of different chemical composition in the final compressed state has been investigated. Electric measurements performed in experiments with nested arrays (e.g., with an aluminum outer liner and a tungsten inner liner) indicate that the inner array, which is still at rest, intercepts the electric current from the outer array when the latter penetrates through it. The effect of the “fall” of the outer liner through the inner one in the course of magnetic implosion has been revealed for the first time by analyzing X-ray emission spectra.  相似文献   

5.
Results are presented from experiments on the electromagnetic implosion of aluminum foil liners at the MIG generator with a current rise time of ≈80 ns. Plasma with a density of 1017 cm–3 was preliminarily injected into the liner region by using a set of radial plasma guns. The Lorentz force J × B causes plasma acceleration in the radial direction. Since the magnetic field pressure is inversely proportional to the radius squared, the plasma displacement is maximum near the liner surface. As a result, plasma motion becomes two-dimensional, a gap appears between the plasma and the liner, and the generator current is switched over to the liner. The plasma velocity at the liner surface is close to the local Alfvén velocity, while the time during which the current is switched over to the liner is nearly equal to the ratio of the liner length to the Alfvén velocity. The proposed scheme allows one to decrease the rise time of the current through the liner to several nano-seconds and, as a result, to reduce the initial liner radius and improve the stability of liner implosion.  相似文献   

6.
Results of experiments on the compression of tungsten wire arrays by the plasma current sheath (PCS) of the PF-3 facility at currents of up to 2 MA are presented. The efficiency of current transportation to the wire array and switching-over of the discharge current to the array were studied. Information on the penetration of the magnetic field into the wire array obtained using microprobes made it possible to compare the obtained experimental data with the results of magnetic field measurements carried out at other high-power electrophysical devices. The intensity of plasma production from tungsten wires under the action of the plasma focus PCS is estimated. The experimental results are tested against the existing models of wire array implosion with prolonged plasma production.  相似文献   

7.
Knowledge of spatial mass distribution is important for understanding the physics of implosion of megaampere-current wire arrays. The paper presents results from studying the electron density distribution at the periphery of a tungsten wire array near the instant of maximum compression by using laser interferometry at λ=0.69 µm. It is found that, at the instant of maximum compression (~100 ns after the beginning of the discharge), the estimated maximum local electron density inside the wire array reaches ~1018 cm?3 at a distance of 0.3–3 mm from the initial wire positions. Assuming the average tungsten ion charge to be 10, the local linear mass density in this region turns out to be 3 µg/cm, which amounts to about 10% of the total linear mass density of the liner. A fraction of the generator current flows through this plasma. The duration of the soft X-ray pulse is 5–8 ns, which indicates the achievement of a fairly high compression ratio.  相似文献   

8.
The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode? anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.  相似文献   

9.
Results are presented from the studies of the magnetic implosion of a tungsten wire liner onto an aluminum wire at currents of 2.0–2.6 MA. The experiments were carried out in the S-300 high-power pulsed facility at the Russian Research Centre Kurchatov Institute. The liner is composed of 50 wires 6 μm in diameter and 1 cm in length, which are equally spaced on a circle 1 cm in diameter. An aluminum wire 120 μm in diameter is positioned at the array axis. The liner implosion was accompanied by the generation of VUV and soft X-ray emission. The parameters of the pinch plasma produced during the liner implosion onto the aluminum wire were determined from the time-resolved spectral measurements by a five-channel polychromator. The ion and electron densities turned out to be equal to n i≈4×1019 cm−3 and n e≈4×1020 cm−3, respectively, and the electron temperature was T e≈40 eV. The radiation energy measured in the range 50–600 eV was 2–10 kJ. The sources of soft X-ray emission in hydrogen-and helium-like aluminum lines were the bright spots and local objects (clouds) formed in the plasma corona at an electron temperature of 200–500 eV and electron density of 1021–1022 cm−3. The possibility of both the generation of an axial magnetic field during the liner implosion and the conversion of the energy of this field into soft X-ray emission is discussed. __________ Translated from Fizika Plazmy, Vol. 28, No. 6, 2002, pp. 514–521. Original Russian Text Copyright ? 2002 by Bakshaev, Blinov, Dan'ko, Ivanov, Klír, Korolev, Kravárik, Krása, Kubeš, Tumanov, Chernenko, Chesnokov, Shashkov, Juha.  相似文献   

10.
Experiments are reported on the implosion of structured loads with outer argon, krypton, and xenon gas puffs and an inner tungsten multiwire array. Experiments were carried out in the GIT-12 generator with a current of 2.6 MA and a current rise time of 270 ns. It is shown that the current successfully switches to the wire array only when the gas puff is sufficiently light. The total implosion time is 300 ns, and the implosion time of a wire array, determined from streak camera images, is 50–70 ns. It is suggested that the switching is efficient only when the active impedance of the gas puff is higher than the transitional resistance of the electrically exploded wires.  相似文献   

11.
Results are presented from experiments on studying the compactness of compression of imploding nested foam-wire loads at currents of up to 4 MA at the Angara-5-1 facility. The degree of pinch compression was estimated from the dynamics of the spatial distribution of the current (magnetic field) and the shape of the soft X-ray pulse. The load consisted of nested cascades, one of which being a wire array and the other being a hollow or solid low-density cylinder made of agar-agar foam with a wall thickness of 100?C200 ??m. In some experiments, one of the cascades was made of C20H17O6 solid-state organic acid foam. The radial distribution of the magnetic field inside the nested cascades of the imploding foam-wire load (both between the cascades and inside the inner cascade) was measured using tiny magnetic probes. The measured radial distributions of the magnetic field are compared with the magnetic field configuration calculated using a one-dimensional MHD code simulating the implosion of a nested foam-wire load. It is shown that the spatial structure of the current and magnetic field during the implosion of such a load is determined by the development of supersonic and subsonic magnetized plasma flows in its cascades. The specific features of pinch formation and methods for the compensation of the nonsimultaneous pinch compression between the anode and the cathode (the zipper effect) during the implosion of a nested foam-wire load are analyzed.  相似文献   

12.
Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100–200 μm. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300–600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in the outer agar-agar foam cascade was 10–40 eV. During the implosion of foam-wire loads at currents of up to 3 MA, SXR pulses (hν > 100 eV) with a duration of 10 ns and peak power of 3 TW were detected. It is shown that the temporal profile of single-peak and double-peak SXR pulses can be controlled by varying the parameters of the outer and inner cascades of the foam-wire load.  相似文献   

13.
Results are presented from experiments on the implosion of wire arrays powered from 100-and 200-mm-diameter helical explosive magnetocumulative generators with explosive opening switches. The experiments were performed at load currents of up to 4 MA, the current rise time being 0.3–0.4 μs. The maximum soft X-ray yield of ~ 100 kJ was achieved at a pinch plasma temperature of 55 eV. A two-dimensional MHD code was developed to simulate the process of liner implosion and the generation of X-ray emission. The results of computer simulations agree satisfactorily with the experimental data.  相似文献   

14.
Results are presented from measurements of the axial magnetic field during the implosion of tungsten wire arrays in the Angara-5-1 facility at currents of 2.5–4.5 MA. The azimuthal structure of the plasma produced from the wires is examined using the effect of the compression of the axial magnetic flux by this plasma. It is shown that the plasma starts to penetrate into the axial region of the wire array at the very beginning of implosion. A mechanism other than the formation of a closed current-carrying shell is proposed for describing the transfer of the external axial magnetic field to the central region of the array.  相似文献   

15.
Results are presented from experimental studies of Z-pinches produced by implosion of aluminum and tungsten cylindrical wire arrays in the Angara-5-1 facility. The electron temperature T e and density n e of the high-temperature pinch plasma have been determined by analyzing line emission from multicharged ions. For the same mass and radius of the array and the same number of wires in it, the intensity of line emission of H- and He-like Al ions from an imploded Al + W wire array containing even a small amount of tungsten (7 wt %) is one order of magnitude lower than that from an Al array. As the W content increases, the total soft X-ray (SXR) yield increases, while the duration of the SXR pulse decreases. For the 30% W content in the array, the power and duration of the SXR pulse are nearly the same as those recorded during the implosion of a W array with the same linear mass and radius and the same number of wires. Results are also presented from experiments with nested wire arrays in which the outer and inner shells were made of Al and W wires, respectively. It is found that, in this case, the effect of tungsten on the line emission of aluminum is much weaker than that in experiments with arrays in which tungsten and aluminum wires were placed in the same shell, even if the mass of the inner (tungsten) shell was larger than that of the outer (aluminum) one. At the same time, the inner W shell plays a significant role in the implosion dynamics of a nested wire array, reducing the duration of the SXR pulse and increasing the SXR power.  相似文献   

16.
Results are presented from experimental studies of hard X-ray (HXR) emission in the photon energy range above 20 keV from dense radiating Z-pinch plasmas. The work is aimed at revealing the nature of fast-electron (electron beam) generation during the implosion of cylindrical and conical wire arrays in the Angara-5-1 facility at currents of up to 3 MA. It is found that the plasma implosion zippering caused by the inclination of wires affects the parameters of the HXR pulse emitted during the implosion of a conical array. It is shown that HXR emission correlates well with the decay of the plasma column near the cathode in the stagnation phase. HXR images of the pinch are produced by the bremsstrahlung of fast electrons generated during plasma column decay and interacting with plasma ions and the anode target. It is found that the use of conical arrays makes it possible to control the direction of plasma implosion zippering and the spatiotemporal and energy parameters of the pinch X-ray emission, in particular the X-ray yield. For wire array with diameters of 12 mm and linear masses of 200–400 μg/cm, the current of the fast electron beam is 20 kA and its energy is 60 J, which is about 1/500 of the energy of the main soft X-ray pulse.  相似文献   

17.
The implosion of nested fiber/wire arrays was studied experimentally at the Angara-5-1 facility. The outer array consisted of kapron fibers, while the inner array was made of tungsten wires. The experiments were carried out at a discharge current of 3 MA. Stable compression of the inner array plasma was achieved by increasing the number of fibers in the outer array. In this case, a compact Z-pinch formed at the array axis. Near the pinch, no trailing plasma produced from the high-Z material of the inner array and capable of scattering and reradiating X-ray photons was observed. The trailing edge of the X-ray pulse was found to shorten in the absence of the trailing plasma around the pinch.  相似文献   

18.
The features are studied of plasma production in the initial stage of implosion of hollow cylindrical wire arrays at electric-field growth rates of 1012 V/(cm s). The results are presented from the analysis of both UV emission from the wire plasma and the discharge parameters in the initial stage of the formation of a Z-pinch discharge. It is found that, a few nanoseconds after applying voltage to a tungsten wire array, a plasma shell arises on the wire surface and the array becomes a heterogeneous system consisting of metal wire cores and a plasma surrounding each wire (a plasma corona). As a result, the current switches from the wires to the plasma. A further heating and ionization of the wire material are due primarily to heat transfer from the plasma corona. A model describing the primary breakdown along the wires is created with allowance for the presence of low-Z impurities on the wire surface.  相似文献   

19.
Prolonged plasma creation in heterogeneous liners, in which the liner substance is separated into two phase states (a hot plasma and a cold skeleton), is investigated both experimentally and theoretically. This situation is typical of multiwire, foam, and even gas liners in high-current high-voltage facilities. The main mechanisms governing the rate at which the plasma is created are investigated, and the simplest estimates of the creation rate are presented. It is found that, during prolonged plasma creation, the electric current flows through the entire cross section of the produced plasma shell, whose thickness is comparable with the liner radius; in other words, a current skin layer does not form. During compression, such a shell is fairly stable because of its relatively high resilience. It is shown that, under certain conditions, even a thick plasma shell can be highly compressed toward the discharge axis. A simplified numerical simulation of the compression of a plasma shell in a liner with prolonged plasma creation is employed in order to determine the conditions for achieving regimes of fairly compact and relatively stable radial compression of the shell.  相似文献   

20.
The phenomenon of magnetic flux breakthrough into a wire array during its implosion was studied experimentally at the Angara-5-1 facility. It is shown that breakthroughs develop in the final stage of plasma production from the wire material and occur near the initial wire position. The spatial distributions of the azimuthal magnetic field within tungsten, molybdenum, copper, and aluminum wire arrays were studied using magnetic probes. The distributions of the azimuthal magnetic field B φ(z, t) along the array height in different stages of implosion were measured, and the characteristic dimensions of regions with a nonuniform magnetic field that appear during magnetic flux breakthroughs at the outer boundary of the wire array plasma were determined. The dimensions of these regions are compared with those of the regions with depressed plasma radiation observed in frame and time-integrated X-ray images. The dynamics of the distribution B φ(z, t) in regions with a nonuniform magnetic field during breakthroughs of the azimuthal magnetic flux is compared with that of the spatial distribution of pinch radiation in the frame X-ray images in different stages of implosion. The experimental data on the characteristics of spatially nonuniform breakthroughs of the magnetic flux into the wire array are analyzed using the plasma rainstorm model proposed by V.V. Aleksandrov et al. (JETP 97, 745 (2003)). The plasma density in the region of magnetic flux breakthrough is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号