首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

oxa CMS is a new cytoplasmic male sterility type in Brassica juncea.

Abstract

oxa CMS is a cytoplasmic male sterility (CMS) line that has been widely used in the production and cultivation of stem mustard in the southwestern China. In this study, different CMS-type specific mitochondrial markers were used to confirm that oxa CMS is distinct from the pol CMS, ogu CMS, nap CMS, hau CMS, tour CMS, Moricandia arvensis CMS, orf220-type CMS, etc., that have been previously reported in Brassica crops. Pollen grains of the oxa CMS line are sterile with a self-fertility rate of almost 0% and the sterility strain rate and sterility degree of oxa CMS is 100% due to a specific flower structure and flowering habit. Scanning electron microscopy revealed that most pollen grains in mature anthers of the oxa CMS line are empty, flat and deflated. Semi-thin section further showed that the abortive stage of anther development in oxa CMS is initiated at the late uninucleate stage. Abnormally vacuolated microspores caused male sterility in the oxa CMS line. This cytological study combined with marker-assisted selection showed that oxa CMS is a novel CMS type in stem mustard (Brassica juncea). Interestingly, the abortive stage of oxa CMS is later than those in other CMS types reported in Brassica crops, and there is no negative effect on the oxa CMS line growth period. This study demonstrated that this novel oxa CMS has a unique flower structure with sterile pollen grains at the late uninucleate stage. Our results may help to uncover the mechanism of oxa CMS in Brassica juncea.
  相似文献   

2.
3.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

4.
A transgenic male sterile line of upland cotton was generated by the ectopic expression of the monooxygenase (MNX) gene from Arabidopsis thaliana via Agrobacterium-mediated transformation. The bacterium harbored a plasmid pBinplus carrying a 1.25-kb MNX coding sequence together with a GUS reporter gene; the former was driven by the MS2 promoter of a male sterility gene in Arabidopsis, and the latter was under the control of CaMV 35S promoter. Twenty-seven putative transgenic plants (T0) were obtained, all of which showed GUS activity and positive signals of NPTII and MNX genes by PCR analysis, and also showed male sterility to some extent. It was further confirmed by Southern blotting that one copy of the NPTII and MNX gene was integrated in the genome of the plants which expressed male sterility to a higher degree. Northern blotting assay also demonstrated that the transgenes stably transcribed in the genome of the transgenic plants in F4 generation. The male sterile plants usually display lower plant height, shortened internodes, shrunken anthers without pollen grains or with some abortive pollen grains, and unusual leaves with deeper multi-lobes. Microscope observations on the meiosis processes of pollen mother cells (PMCs) showed that the abortion of pollen grains mainly resulted from abnormalities of meiosis such as direct degeneration of PMCs, degenerations of dyad and tetrads, amitosis, lagging chromosomes, and the multi-polar segregations of chromosomes and so on. This study indicates a method of developing novel cotton male sterile materials for potential application in agriculture and for engineering of male sterility in other important crops.  相似文献   

5.
A new cytoplasmic male sterility (CMS) source in Brassica juncea (2n = 36; AABB) was developed by substituting its nucleus into the cytoplasm of Enarthrocarpus lyratus (2n = 20; E(l)E(l)). Male sterility was complete, stable and manifested in either petaloid- or rudimentary-anthers which were devoid of fertile pollen grains. Male sterile plants resembled the euplasmic B. juncea except for slight leaf yellowing and delayed maturity. Leaf yellowing was due mainly to higher level of carotenoids rather than a reduction in chlorophyll pigments. Female fertility in male-sterile plants varied; it was normal in lines having rudimentary anthers but poor in those with petaloid anthers. Each of the 62 evaluated germplasm lines of B. juncea was a functional maintainer of male sterility. The gene(s) for male-fertility restoration ( Rf) were introgressed from the cytoplasm donor species through homoeologous pairing between A and E(l) chromosomes in monosomic addition plants (2n = 18II+1E(l)). The percent pollen fertility of restored F(1) ( lyr CMS x putative restorer) plants ranged from 60 to 80%. This, however, was sufficient to ensure complete seed set upon by bag selfing. The CMS ( lyr) B. juncea compared favourably with the existing CMS systems for various productivity related characteristics. However, the reduced transmission frequency of the Rf gene(s) through pollen grains, which was evident from the sporadic occurrence of male-sterile plants in restored F(1) hybrids, remains a limitation.  相似文献   

6.
7.
The objective of this study was to determine the effect of silicon (Si) and cadmium (Cd) on root and shoot growth and Cd uptake in two hydroponically cultivated Brassica species (B. juncea (L.) Czern. cv. Vitasso and B. napus L. cv. Atlantic). Both species are potentially usable for phytoextraction. Inhibitory effects of Cd on root elongation were diminished by the impact of Si. Primary roots elongation in the presence of Cd + Si compared with Cd was stronger and the number of lateral roots was lower in B. juncea than in B. napus. Cd content per plant was higher in B. napus roots and shoots compared with B. juncea. Suberin lamellae were formed closer to the root apex in Cd + Si than in Cd treated plants and this effect was stronger in B. napus than in B. juncea. Accelerated maturation of endodermis was associated with reduced Cd uptake. Cd decreased the content of chlorophylls and carotenoids in both species, but Si addition positively influenced the content of photosynthetic pigments which was higher in B. napus than in B. juncea. Si enhanced more substantially translocation of Cd into the shoot of B. napus than of B. juncea. Based on our results B. napus seems to be more suitable for Cd phytoextraction than B. juncea because these plants produce more biomass and accumulate higher amount of Cd. The protective effect of Si on Cd treated Brassica plants could be attributed to more extensive development of suberin lamellae in endodermis.  相似文献   

8.
Prevention of transgene flow from genetically modified crops to food crops and wild relatives is of concern in agricultural biotechnology. We used genes derived from food crops to produce complete male sterility as a strategy for gene confinement as well as to reduce the food purity concerns of consumers. Anther-specific promoters (A3, A6, A9, MS2, and MS5) were isolated from Brassica oleracea and B. rapa and fused to the β-glucuronidase (GUS) reporter gene and candidate genes for male sterility, including the cysteine proteases BoCysP1 and BoCP3, and negative regulatory components of phytohormonal responses involved in male development. These constructs were then introduced into Arabidopsis thaliana. GUS analyses revealed that A3, A6, and A9 had tapetum-specific promoter activity from the anther meiocyte stage. Male sterility was confirmed in tested constructs with protease or gibberellin insensitive (gai) genes. In particular, constructs with BoCysP1 driven by the A3 or A9 promoter most efficiently produced plants with complete male sterility. The tapetum and middle layer cells of anthers expressing BoCysP1 were swollen and excessively vacuolated when observed in transverse section. This suggests that the ectopic expression of cysteine protease in the meiocyte stage may inhibit programmed cell death. The gai gene also induced male sterility, although at a low frequency. This is the first report to show that plant cysteine proteases and gai from food crops are available as a novel tool for the development of genetically engineered male-sterile plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
In our previous study, we bred a stable cytoplasmic male sterility (CMS) line of tuber mustard by using distant hybridization and subsequent backcrosses. In this CMS plants, all floral organs are normal except the anthers, which are transformed into petals or tubular structures. Recently, 2 mitochondrial genes—atpA and orf220—that are distinctively present in the CMS line of tuber mustard were cloned and partially characterized. In our study of genetic diversity analysis of CMS, 7 species of Brassica and Raphanus crops, which included 5 CMS lines and their respective maintainer lines, were used to compare the constitution of protein-coding genes in the mitochondrial genomes. In 4 of the 43 mitochondrial genes, namely, atpA, orf220, orf256, and orf305/orf324, polymorphisms were detected among the tuber mustard CMS line and its maintainer line. The results of a cluster analysis indicate that petaloid CMS phenotype of tuber mustard is a novel CMS type and is nearer to the nap CMS in Brassica napus at the phylogenetic level. The results of individual amplifications of these genes indicate the presence of 4 sequence-characterized amplified region (SCAR) markers, which enable rapid and reliable identification of this CMS. Expressions of the orf220 and orf256 genes were detected only in the CMS line, while expression of the orf305 gene was detected in the maintainer line. The different expression patterns of different mitochondrial-specific marker genes indicate that the quantity of mitochondrial proteins is differentially regulated during organ/tissue development in tuber mustard. The results of this study suggest that the above mentioned 4 mitochondrial genes are associated with the petaloid CMS phenotype in tuber mustard.  相似文献   

10.
11.
12.
A cytoplasmic male sterile line (designated as M2BS) was obtained from an indica rice maintainer M2B induced by partial-length HcPDIL5-2a (Hibiscus cannabinus protein disulfide isomerase-like) transformation. The anther of M2BS was short, slender, hygrophanous, and fissured. I2-KI staining method showed that there was typical and spherical abortion in pollen grains. M2BS was found abortive at middle and late stage of monocyte by the modified carbol fuchsin stained observation and paraffin section observation. The tapetum was observed pre-degenerated in M2BS. Hereditary analysis indicated that the male sterility of M2BS was a maternally inherited inability after six backcross generations with M2B and the combinations of M2BS hybridized with other two male fertile materials. The M2BS could be affirmed a cytoplasmic male sterile (CMS) type. Moreover, it was a transgenic plant confirmed by PCR, Southern blot and RT-PCR detection. M2BS could be distinguished from M2B and its CMS line M2A by RFLP analysis. The overall mitochondrial genome sequencing results showed, that in M2BS, the main differences of mitochondrial gene sequence were located in nad4, nad5, nad7, orf194 and intergenic region, relatively to those of M2A. The obtained results indicate that M2BS is a novel cytoplasmic male sterile line.  相似文献   

13.
In Brassica, the thioredoxinhproteins, THL1 and THL2, were previously found to be potential inhibitors of the S receptor kinase (SRK) in the Brassica self-incompatibilty response. To investigate the biological roles of THL1 and THL2 in pollen–pistil interactions, the stigma-specific SLR1 promoter was used to drive antisense THL1/2 expression in Brassica napus cv. Westar. This cultivar is normally compatible, but antisense suppression of THL1/2 led to a low level constitutive rejection of all Brassica napus pollen tested. Fluorescence microscopy revealed that the pollen rejection was a typical Brassica self-incompatibility rejection response with reduced pollen adhesion, germination and pollen tube growth. In addition, Westar was found to express the SLG15 and SRK15 proteins which may be the target of regulation by THL1 and THL2. Thus, these results indicate that the THL1 and THL2 are required for full pollen acceptance in B. napus cv. Westar.  相似文献   

14.
Male sterility is of special interest as a mechanism allowing hybrid breeding, especially in important crops such as rapeseed (Brassica napus). Male sterile plants are also suggested to be used as a biological safety method to prevent the spread of transgenes, a risk that is high in the case of rapeseed due to the mode of pollination, out-crossing by wind or insects, and the presence of related, cross-pollinating species in the surrounding ecosystem in Europe. Different natural occurring male sterilities and alloplasmic forms have been tried to be used in rapeseed with more or less success. Due to the difficulties and limitations with these systems, we present a biotechnological alternative: a metabolically engineered male sterility caused by interference with anther-specific cell wall-bound invertase. This is an essential enzyme for carbohydrate supply of the symplastically isolated pollen. The activity of this enzyme is reduced either by antisense interference or by expressing an invertase inhibitor under control of the anther-specific promoter of the invertase with the consequence of a strong decrease of pollen germination ability.  相似文献   

15.
We studied how plant cell modulated redox homeostasis in cytoplasmic male-sterility (CMS) Brassica juncea. The CMS Brassica juncea was identified to be mutated in several mitochondrial genes that suggested the changes of cell redox homeostasis. We observed that it was not associated with increased oxidative stress as shown by decreased H2O2 and OH contents in this type of CMS. The expressions of several anti-oxidative genes were up-regulated in 5-day-old seedlings of CMS than MF lines under light and dark conditions. The mitochondrial alternative oxidase pathway was not activated, as indicated by no increased expression of AOX1a gene in CMS. Interestingly, the expression of Ferritin1 gene was markedly activated in 5-day-old seedlings of CMS than MF line under light and dark conditions. Consequently, we detected increased content of total iron in 30-day-old leaves in CMS than MF line. We isolated Ferritin1 orthologous gene from Brassica juncea, which was targeted to the chloroplast and induced by Fe-citrate and H2O2, not ABA. Taken together, we proposed that increased expressions of BjFer1 and several antioxidant genes protected cell from oxidative stress in CMS Brassica juncea.  相似文献   

16.
In the recessive genic male sterile line 9012A of Brassica napus, pollen development is affected during the tetrad stage. According to the light and electron microscopy analysis of tapetal cells and tetrads, the sterile tapetal cells swelled with expanded vacuoles at the early tetrad stage and finally filled the center of the locules where a majority of tetrads encased with the thick callose wall collapsed and degraded. We suggested that an absence of callase, which is a wall-degrading enzyme stored in the vacuoles of tapetal cells before secretion, resulted in the failure of tetrad separation. Moreover, transmission electron microscopy analysis showed that the secretory tapetal cells were not observed in sterile anthers, which indicated that the transition of the tapetum from the parietal type to the secretory type was probably aberrant. In plants, degeneration of the tapetum is thought to be the result of programmed cell death (PCD). PCD of tapetal cells was investigated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and signals indicative of deoxyribonucleic acid fragmentation were detected much earlier in sterile anther than in fertile anther. This suggests that tapetal breakdown does not occur by the normal procession of PCD and might be following an alternative mechanism of unscheduled apoptosis in line 9012A. This research supports the hypothesis that premature PCD is associated with male sterility in B. napus.  相似文献   

17.
The Brassica napus oilseed rape line, 7-7365AB, is a recessive epistatic genic male sterile (RGMS) two-type line system. The sterility is controlled by two pairs of recessive duplicate genes (Bnms3 and Bnms4) and one pair of recessive epistatic inhibitor gene (Bnrf). Homozygosity at the Bnrf locus (Bnrfrf) inhibits the expression of the two recessive male sterility genes in homozygous Bnms3ms3ms4ms4 plants and produces a male fertile phenotype. This line has a good potential for heterosis utilization but it is difficult to breed heterotic hybrids without molecular markers. To develop markers linked to the BnMs3 gene, amplified fragment length polymorphism (AFLP) technology was applied to screen the bulks of sterile and fertile individuals selected randomly from a population of near-isogenic lines (NIL) consisting of 2,000 plants. From a survey of 1,024 primer combinations, we identified 17 AFLP markers linked to the BnMs3 gene. By integrating the previous markers linked to the BnMs3 gene into the genetic map of the NIL population, two markers, EA01MC12 and EA09P06, were located on either side of the BnMs3 gene at a distance of 0.1 and 0.3 cM, respectively. In order to use the markers for male sterile line breeding, five AFLP markers, P05MG05, P03MG04, P11MG02, P05MC11250, and EA09P06, were successfully converted into sequence characterized amplified region (SCAR) markers. Two of these, P06MG04 and sR12384, were subsequently mapped on to linkage group N19 using two doubled-haploid mapping populations available at our laboratory derived from the crosses Tapidor × Ningyou7 and Quantum × No2127-17. The markers found in the present study should improve our knowledge of recessive genic male sterility (RGMS), and accelerate the development of male sterile line breeding and map-based cloning.  相似文献   

18.
19.

Background  

The novel chimeric open reading frame (orf) resulting from the rearrangement of a mitochondrial genome is generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). Both positive and negative correlations have been found between CMS-associated orfs and the occurrence of CMS when CMS-associated orfs were expressed and targeted at mitochondria. Some orfs cause male sterility or semi-sterility, while some do not. Little is currently known about how mitochondrial factor regulates the expression of the nuclear genes involved in male sterility. The purpose of this study was to investigate the biological function of a candidate CMS-associated orf220 gene, newly isolated from cytoplasmic male-sterile stem mustard, and show how mitochondrial retrograde regulated nuclear gene expression is related to male sterility.  相似文献   

20.
For years discovery and identification of the cytoplasmic male sterility (CMS) resource in wild rice is the most intriguing events in breeding field. orfH79, a chimeric gene in mitochondria, has been suggested being the determinant for Honglian CMS in rice. In this report orfH79 gene as molecular marker to screen the wild rice, we found eight accessions with orfH79 gene in the total 42 investigated objects. Sequence analysis revealed that there were a total of nine nucleotide substitutions resulting in the change of nine amino acids in the newly identified orfH79 in wild rice, which further fell into seven haplotypes. In order to investigate the underlying relationship between orfH79 haplotypes and the corresponding fertility restorers, four accessions were selected with different orfH79 haplotype as female parents to hybridize the Honglian maintainer line, Yuetai B. After eight consecutive recurrent backcrosses, four alloplasmic CMS lines with different orfH79 haplotype were developed. Microscopic observation exhibited that their pollen grains were spherical and clear in 1% I2–KI solution same as that of Honglian CMS line. Moreover, these four CMS lines displayed various fertility restoring model through test cross, suggesting that each orfH79 haplotye represents a new CMS type and corresponds to their specific Rf allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号