共查询到20条相似文献,搜索用时 10 毫秒
1.
Assignments in the 1H NMR spectrum for more than 120 resonances arising from 38 of the 130 amino acid residues of human lysozyme are presented. Assignments have been achieved using a combination of one and two-dimensional NMR techniques. Two-dimensional double-quantum correlated spectroscopy and relayed coherence transfer spectroscopy were found to be particularly useful for the identification of spin systems in the aromatic and methyl regions of the spectrum. These spin systems were assigned to specific residues in human lysozyme with reference to the X-ray crystal structure using one-dimensional nuclear Overhauser enhancement (NOE) data and a computer-based search procedure. Unique assignments were found for resonances of 27 amino acid residues even when a distance constraint on NOE effects of 0.7 nm was used in the search procedure; for the remaining residues closer constraints or additional information were required. The assignments include all but one of the resonances in the aromatic region of the spectrum and all the methyl group resonances in the region upfield of 0.6 ppm. The assignments presented here provide a basis for a comparison of the NMR spectra of human lysozyme and the more widely studied hen lysozyme. 相似文献
2.
Hydrogen-exchange kinetics of the indole NH proton of the buried tryptophan in the constant fragment of the immunoglobulin light chain 总被引:1,自引:0,他引:1
The constant fragment of the immunoglobulin light chain (type lambda) has two tryptophyl residues at positions 150 and 187. Trp-150 is buried in the interior, and Trp-187 lies on the surface of the molecule. The hydrogen-deuterium exchange kinetics of the indole NH proton of Trp-150 were studied at various pH values at 25 degrees C by 1H nuclear magnetic resonance. Exchange rates were approximately first order in hydroxyl ion dependence above pH 8, were relatively independent of pH between pH 7 and 8, and decreased below pH 7. On the assumption that the exchange above pH 8 proceeds through local fluctuations of the protein molecule, the exchange rates between pH 7 and 8 through global unfolding were estimated. The exchange rate constant within this pH range at 25 degrees C thus estimated was consistent with that of the global unfolding of the constant fragment under the same conditions as those reported previously [Kikuchi, H., Goto, Y., & Hamaguchi, K. (1986) Biochemistry 25, 2009-2013]. The activation energy for the exchange process at pH 7.8 was the same as that for the unfolding process by 2 M guanidine hydrochloride. The exchange rates of backbone NH protons were almost the same as that of the indole NH proton of Trp-150 at pH 7.1. These observations also indicated that the exchange between pH 7 and 8 occurs through global unfolding of the protein molecule and is rate-limited by the unfolding.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
4.
Isolated beta chains from human adult hemoglobin at millimolar concentration are mainly associated to form beta 4 tetramers. We were able to obtain relevant two-dimensional proton nuclear magnetic resonance (NMR) spectra of such supermolecular complexes (Mr approximately 66,000) in the carboxylated state. Analysis of the spectra enabled us to assign the major part of the proton resonances corresponding to the heme substituents. We also report assignments of proton resonances originating from 12 amino acid side chains mainly situated in the heme pocket. These results provide a basis for a comparative analysis of the tertiary heme structure in isolated beta(CO) chains in solution and in beta(CO) subunits of hemoglobin crystals. The two structures are generally similar. A significantly different position, closer to the heme center, is predicted by the NMR for Leu-141 (H19) in isolated beta chains. Comparison of the assigned resonances of conserved amino acids in alpha chains, beta chains and sperm whale myoglobin indicates a close similarity of the tertiary heme pocket structure in the three homologous proteins. Significant differences were noted on the distal heme side, at the position of Val-E11, and on Leu-H19 and Phe-G5 position on the proximal side. 相似文献
5.
Deng H Lewandowicz A Cahill SM Furneaux RH Tyler PC Girvin ME Callender RH Schramm VL 《Biochemistry》2004,43(7):1980-1987
Purine nucleoside phosphorylase (PNP) catalyzes N-ribosidic bond phosphorolysis in 6-oxypurine nucleosides and deoxynucleosides to form purine and alpha-D-phosphorylated ribosyl products. The transition state has oxacarbenium ion character with partial positive charge near C-1', ionic stabilization from the nearby phosphate anion, and protonation at N-7 of the purine. Immucillin-H (ImmH) has a protonated N-7 and resembles the transition-state charge distribution when N-4' is protonated to the cation. It binds tightly to the PNPs with a K(d) value 56 pM for human PNP. Previous NMR studies of PNP.ImmH.PO(4) have shown that the N-4' of bound ImmH is a cation and is postulated to have a significant contribution to its tight binding. Several unassigned downfield proton resonances (>11 ppm) are specific to the PNP.ImmH.PO(4) complex, suggesting the existence of strong hydrogen bonds. In this study, two of the proton resonances in this downfield region have been assigned. Using (15)N-7-labeled ImmH, a resonance at 12.5 ppm has been assigned to N-7H. The N-7H resonance is shifted downfield by only approximately 1 ppm from its position for ImmH free in aqueous solution, consistent with only a small change in the hydrogen bonding on N-7H upon binding of ImmH to PNP. In contrast, the downfield resonance at 14.9 ppm in the PNP.ImmH.PO(4) complex is assigned to N-1H of ImmH by using saturation-transferred NOE measurements on the PNP.ImmH complex. The approximately 4 ppm downfield shift of the N-1H resonance from its position for ImmH free in solution suggests that the hydrogen bonding to the N-1H in the complex has a significant contribution to the binding of ImmH to PNP. The crystal structure shows Glu201 is in a direct hydrogen bond with N-1H and to O-6 through a water bridge. In the complex with 6-thio-ImmH, the N-1H resonance is shifted further downfield by an additional 1.5 ppm to 16.4 ppm, but the relative shift from the value for 6-thio-ImmH free in solution is the same as in the ImmH complex. Since the binding affinity to hPNP for 6-thio-ImmH is decreased 440-fold relative to that for ImmH, the loss in binding energy is primarily due to the hydrogen bond energy loss at the 6-thiol. 相似文献
6.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein. 相似文献
7.
J G Collins 《Biochemistry international》1988,16(5):819-828
The non-exchangeable base and sugar protons of the dodecanucleotide d(CAATCCGGATTG) have been assigned by the combined use of one and two-dimensional NMR spectroscopy. The sequential assignments of the base and sugar protons have been obtained using two dimensional nuclear Overhauser effect and homonuclear shift correlated spectra. By analysis of the nuclear Overhauser effect data it was determined that the dodecanucleotide assumes a right handed B-type helix in the aqueous medium used in this study. 相似文献
8.
9.
Assignment of resonances for 'acute-phase' glycoproteins in high resolution proton NMR spectra of human blood plasma 总被引:1,自引:0,他引:1
Broad resonances at 2.04 and 2.08 ppm in 500 MHz Hahn spin-echo 1H NMR spectra of human blood plasma are assigned to the N-acetyl groups of mobile carbohydrate side-chains (largely N-acetylglucosamine and N-acetylneuraminic acid) of glycoproteins such as alpha 1-acid glycoprotein. Their intensities in spin-echo spectra correlate with clinical conditions in which an elevation of the level of 'acute-phase' glycoproteins is expected, and so may be of value in the study of certain diseases. 相似文献
10.
Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods 总被引:60,自引:0,他引:60
A general method of assigning the non-exchangeable protons in the nuclear magnetic resonance spectra of small DNA molecules has been developed based upon two-dimensional autocorrelated (COSY) and nuclear Overhauser (NOESY) spectra in 2H2O solutions. Groups of protons in specific sugars or bases are identified by their scalar couplings (COSY), then connected spatially in a sequential fashion using the Overhauser effect (NOESY). The method appears to be generally applicable to moderate-sized DNA duplexes with structures close to B DNA. The self-complementary DNA sequence d(C-G-C-G-A-A-T-T-C-G-C-G) has been synthesized by the solid-phase phosphite triester technique and studied by this method. Analysis of the COSY spectrum and the NOESY spectrum leads to the unambiguous assignment of all protons in the molecule except the poorly resolved H5' and H5" resonances. The observed NOEs indicate qualitatively that, in solution, the d(C-G-C-G-A-A-T-T-C-G-C-G) helix is right-handed and close to the B DNA form with a structure similar to that determined by crystallography. 相似文献
11.
Assignment of methylene proton resonances in NMR spectra of embryonic and transformed cells to plasma membrane triglyceride 总被引:2,自引:0,他引:2
G L May L C Wright K T Holmes P G Williams I C Smith P E Wright R M Fox C E Mountford 《The Journal of biological chemistry》1986,261(7):3048-3053
Some biological characteristics of cancer cells and solid tumors are identifiable by the high resolution NMR relaxation behavior of their nonaqueous components. Chemical analysis and two-dimensional scalar correlated (COSY) NMR spectroscopy show these resonances arise from neutral lipid in the plasma membrane. Triglyceride is shown to be the main plasma membrane component giving rise to the NMR spectrum, while soluble nonmembrane components account for 90% of the remaining resonances in the spectrum of intact cells. The presence of triglyceride has been detected by chemical analysis in highly purified plasma membranes from two different cell lines. The COSY spectra of cancer cells are comparable with that obtained for the triglyceride-rich very low density human lipoprotein. 相似文献
12.
13.
14.
Studies on the dependence of indole and tryptophan fluorescence emission spectra on excitation wavelength, ex, show that the emission shifts to longer wavelengths for red-edge excitation in different solid and viscous solvents. In solid systems the spectral shifts for excitation in the range from 290 to 310 nm can reach tens of nm, and they are more significant than changes of ex. In a viscous medium the magnitude of this effect is shown to be directly related to the dipole-reorientational relaxation of solvent molecules in the environment of the chromophore, which allows the relaxation times to be estimated. The method involves simple steady-state measurements of fluorescence spectra at the maximum and at the red edge of the absorption band. Since it is not necessary to obtain information on the fluorescence spectra of completely relaxed states, this method for the estimation of relaxation times may have advantages in studies of proteins compared with the conventional relaxation shift method, and may produce complementary information to that obtained by nanosecond time-resolved spectroscopy. 相似文献
15.
The 13C and proton chemical shifts of the 55 methyl groups of horse cytochrome c have been determined over a range of temperatures both in the diamagnetic ferrocytochrome and in the paramagnetic ferricytochrome. Specific assignments of many proton resonances have been published previously and all of the remaining methyl proton resonances are now specifically assigned. The corresponding 13C assignments follow directly, including those of contact shifted 13C resonances which are reported for the first time. 相似文献
16.
Assignment of phosphorus-31 and nonexchangeable proton resonances in a symmetrical 14 base pair lac pseudooperator DNA fragment 总被引:1,自引:0,他引:1
The 31P chemical shifts of all 13 phosphates and the chemical shifts of nearly all of the non-exchangeable protons of a symmetrical 14 base pair lac pseudooperator DNA fragment have been assigned by regiospecific labeling with oxygen-17 and two-dimensional NMR techniques. At 22 degrees C, 8 of the 13 phosphorus resonances can distinctly be resolved while the remaining 5 resonances occur in two separate overlapping regions. The 31P chemical shifts of this particular 14 base pair oligonucleotide do not follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence the more upfield the 31P resonance occurs, as shown from other 31P assignment studies. Failure of this general rule is believed to be a result of helical distortions that occur along the oligonucleotide double helix, on the basis of the analysis of Callidine [Callidine, C.R. (1982) J. Mol. Biol. 161, 343-352]. Notable exceptions to the phosphate position relationship are 5'-Py-Pu-3' dinucleotide sequences, which resonate at a lower field strength than expected in agreement with similar results as reported by Ott and Eckstein [Ott, J., & Eckstein, F. (1985) Biochemistry 24, 253]. A reasonable correlation exists between 31P chemical shifts values of the 14-mer and the helical twist sum function of Calladine. The most unusual 31P resonance occurs most upfield in the 31P spectrum, which has been assigned to the second phosphate position (5'-GpT-3') from the 5' end. This unusual chemical shift may be the result of the predicted large helical twist angle that occurs at this position in the 14-mer sequence. Further, it is believed that the large helical twist represents a unique structural feature responsible for optimum binding contact between lac repressor protein and this 14-mer lac pseudooperator segment. Assignments of proton resonances were made from two-dimensional 1H-1H nuclear Overhauser effect (NOESY) connectivities in a sequential manner applicable to right-handed B-DNA, in conjunction with two-dimensional homonuclear and heteronuclear J-correlated spectroscopies (1H-1H COSY and 31P-1H HETCOR). Most nonexchangeable base proton and deoxyribose proton (except for some unresolved H4', H5', and H5" protons) resonances were assigned. 相似文献
17.
Inhibition of lysozyme by imidazole and indole derivatives 总被引:3,自引:0,他引:3
M Shinitzky E Katchalski V Grisaro N Sharon 《Archives of biochemistry and biophysics》1966,116(1):332-343
18.
M J Kime 《FEBS letters》1984,173(2):342-346
The downfield proton NMR spectrum of aqueous uniformly nitrogen-15 enriched 5 S RNA fragment is presented. Selective nitrogen-15 decoupling difference proton spectroscopy revealed nitrogen-15 chemical shifts of fragment imino nitrogens. Nitrogen chemical shifts of nucleic acid guanine and uracil imino nitrogens have separate small ranges. Nitrogen-15 and proton chemical shift correlation by the heteronuclear decoupling permitted the identification of the base type of some previously unassigned imino proton resonances in the 5 S RNA fragment spectrum. Corresponding resonances in the natural isotopic abundance 5 S RNA fragment spectrum are assigned to base types by comparison with the enriched sample spectrum. 相似文献
19.
Proton nuclear magnetic resonances study of bleomycin in aqueous solution. Assignment of resonances.
The 1H NMR spectrum of the glycopeptide antineoplastic antibiotic bleomycin has been examined in D2O solution (Fourier transform nuclear magnetic resonance, 270 MHZ) and in H2O solution (correlation nuclear magnetic resonance, 250 MHZ). Resonances have been assigned to specific hydrogens of the two most abundant congeners, bleomycin-A2 (BLM-A2) and bleomycin-B2 (BLM-B2), on the basis of (1) homonuclear spin decoupling, (2) comparison of the spectra of BLM-A2, BLM-B2, fragments of these antibiotics, and the related antibiotic phleomycin, and (3) the pH dependence of chemical shifts. Resonance assignments are presented for all the CH protons of BLM-A2 and BLM-B2 except for the saccharide groups, for which only the anomeric proton assignments are given. All of the NH protons have been identified with specific resonances except for the two primary amide groups, which yield four well-resolved peaks, whose specific assignment was not attempted. This study serves as a basis for future investigations of the conformation of bleomycin and its interaction with metals and nucleic acids. 相似文献
20.
The position of the active tryptophan residue in lysozyme 总被引:2,自引:0,他引:2